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FIGURE 4
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FIGURE §
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FIGURE 6

VEGF-A with Natural NTPs
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FIGURE 6 CONT.
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FIGURE 7
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FIGURE 8
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FIGURE 9

VEGF in Hela Cells
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FIGURE 10

VEGF Lipoplexes in Mice
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FIGURE 11
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FIGURE 12
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MODIFIED POLYNUCLEOTIDES ENCODING
ARYL HYDROCARBON RECEPTOR
NUCLEAR TRANSLOCATOR

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of International Patent
Application No. PCT/US2013/030067, filed Mar. 9, 2013,
entitled Modified Polynucleotides for the Production of
Nuclear Proteins which claims priority to U.S. Provisional
Patent Application No. 61/681,742, filed, Aug. 10, 2012,
entitled Modified Polynucleotides for the Production of
Oncology-Related Proteins and Peptides, U.S. Provisional
Patent Application No. 61/737,224, filed Dec. 14, 2012,
entitled Terminally Optimized Modified RNAs, International
Application No PCT/US2012/069610, filed Dec. 14, 2012,
entitled Modified Nucleoside, Nucleotide, and Nucleic Acid
Compositions, U.S. Provisional Patent Application No.
61/618,862, filed Apr. 2, 2012, entitled Modified Polynucle-
otides for the Production of Biologics, U.S. Provisional
Patent Application No. 61/681,645, filed Aug. 10, 2012,
entitled Modified Polynucleotides for the Production of Bio-
logics, U.S. Provisional Patent Application No. 61/737,130,
filed Dec. 14, 2012, entitled Modified Polynucleotides for the
Production of Biologics, U.S. Provisional Patent Application
No. 61/618,866, filed Apr. 2, 2012, entitled Modified Poly-
nucleotides for the Production of Antibodies, U.S. Provi-
sional Patent Application No. 61/681,647, filed Aug. 10,
2012, entitled Modified Polynucleotides for the Production of
Antibodies, U.S. Provisional Patent Application No. 61/737,
134, filed Dec. 14, 2012, entitled Modified Polynucleotides
for the Production of Antibodies, U.S. Provisional Patent
Application No. 61/618,868, filed Apr. 2, 2012, entitled
Modified Polynucleotides for the Production of Vaccines,
U.S. Provisional Patent Application No. 61/681,648, filed
Aug. 10, 2012, entitled Modified Polynucleotides for the
Production of Vaccines, U.S. Provisional Patent Application
No. 61/737,135, filed Dec. 14, 2012, entitled Modified Poly-
nucleotides for the Production of Vaccines, U.S. Provisional
Patent Application No. 61/618,870, filed Apr. 2, 2012,
entitled Modified Polynucleotides for the Production of
Therapeutic Proteins and Peptides, U.S. Provisional Patent
Application No. 61/681,649, filed Aug. 10, 2012, entitled
Modified Polynucleotides for the Production of Therapeutic
Proteins and Peptides, U.S. Provisional Patent Application
No. 61/737,139, filed Dec. 14, 2012, Modified Polynucle-
otides for the Production of Therapeutic Proteins and Pep-
tides, U.S. Provisional Patent Application No. 61/618,873,
filed Apr. 2, 2012, entitled Modified Polynucleotides for the
Production of Secreted Proteins, U.S. Provisional Patent
Application No. 61/681,650, filed Aug. 10, 2012, entitled
Modified Polynucleotides for the Production of Secreted Pro-
teins, U.S. Provisional Patent Application No. 61/737,147,
filed Dec. 14, 2012, entitled Modified Polynucleotides for the
Production of Secreted Proteins, U.S. Provisional Patent
Application No. 61/618,878, filed Apr. 2, 2012, entitled
Modified Polynucleotides for the Production of Plasma
Membrane Proteins, U.S. Provisional Patent Application No.
61/681,654, filed Aug. 10, 2012, entitled Modified Poly-
nucleotides for the Production of Plasma Membrane Proteins,
U.S. Provisional Patent Application No. 61/737,152, filed
Dec. 14,2012, entitled Modified Polynucleotides for the Pro-
duction of Plasma Membrane Proteins, U.S. Provisional
Patent Application No. 61/618,885, filed Apr. 2, 2012,
entitled Modified Polynucleotides for the Production of Cyto-
plasmic and Cytoskeletal Proteins, U.S. Provisional Patent
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Application No. 61/681,658, filed Aug. 10, 2012, entitled
Modified Polynucleotides for the Production of Cytoplasmic
and Cytoskeletal Proteins, U.S. Provisional Patent Applica-
tion No. 61/737,155, filed Dec. 14, 2012, entitled Modified
Polynucleotides for the Production of Cytoplasmic and
Cytoskeletal Proteins, U.S. Provisional Patent Application
No. 61/618,896, filed Apr. 2, 2012, entitled Modified Poly-
nucleotides for the Production of Intracellular Membrane
Bound Proteins, U.S. Provisional Patent Application No.
61/668,157, filed Jul. 5, 2012, entitled Modified Polynucle-
otides for the Production of Intracellular Membrane Bound
Proteins, U.S. Provisional Patent Application No. 61/681,
661, filed Aug. 10, 2012, entitled Modified Polynucleotides
for the Production of Intracellular Membrane Bound Pro-
teins, U.S. Provisional Patent Application No. 61/737,160,
filed Dec. 14, 2012, entitled Modified Polynucleotides for the
Production of Intracellular Membrane Bound Proteins, U.S.
Provisional Patent Application No. 61/618,911, filed Apr. 2,
2012, entitled Modified Polynucleotides for the Production of
Nuclear Proteins, U.S. Provisional Patent Application No.
61/681,667, filed Aug. 10, 2012, entitled Modified Poly-
nucleotides for the Production of Nuclear Proteins, U.S. Pro-
visional Patent Application No. 61/737,168, filed Dec. 14,
2012, entitled Modified Polynucleotides for the Production of
Nuclear Proteins, U.S. Provisional Patent Application No.
61/618,922, filed Apr. 2, 2012, entitled Modified Polynucle-
otides for the Production of Proteins, U.S. Provisional Patent
Application No. 61/681,675, filed Aug. 10, 2012, entitled
Modified Polynucleotides for the Production of Proteins,
U.S. Provisional Patent Application No. 61/737,174, filed
Dec. 14,2012, entitled Modified Polynucleotides for the Pro-
duction of Proteins, U.S. Provisional Patent Application No.
61/618,935, filed Apr. 2, 2012, entitled Modified Polynucle-
otides for the Production of Proteins Associated with Human
Disease, U.S. Provisional Patent Application No. 61/681,687,
filed Aug. 10, 2012, entitled Modified Polynucleotides for the
Production of Proteins Associated with Human Disease, U.S.
Provisional Patent Application No. 61/737,184, filed Dec. 14,
2012, entitled Modified Polynucleotides for the Production of
Proteins Associated with Human Disease, U.S. Provisional
Patent Application No. 61/618,945, filed Apr. 2, 2012,
entitled Modified Polynucleotides for the Production of Pro-
teins Associated with Human Disease, U.S. Provisional
Patent Application No. 61/681,696, filed Aug. 10, 2012,
entitled Modified Polynucleotides for the Production of Pro-
teins Associated with Human Disease, U.S. Provisional
Patent Application No. 61/737,191, filed Dec. 14, 2012,
entitled Modified Polynucleotides for the Production of Pro-
teins Associated with Human Disease, U.S. Provisional
Patent Application No. 61/618,953, filed Apr. 2, 2012,
entitled Modified Polynucleotides for the Production of Pro-
teins Associated with Human Disease, U.S. Provisional
Patent Application No. 61/681,704, filed Aug. 10, 2012,
entitled Modified Polynucleotides for the Production of Pro-
teins Associated with Human Disease, U.S. Provisional
Patent Application No. 61/737,203, filed Dec. 14, 2012,
entitled Modified Polynucleotides for the Production of Pro-
teins Associated with Human Disease, U.S. Provisional
Patent Application No. 61/618,961, filed Apr. 2, 2012,
entitled Dosing Methods for Modified mRNA, U.S. Provi-
sional Patent Application No. 61/648,286, filed May 17,
2012, entitled Dosing Methods for Modified mRNA, the con-
tents of each of which are herein incorporated by reference in
its entirety.

This application is also related to International Publication
No. PCT/US2012/58519, filed Oct. 3, 2012, entitled Modi-
fied Nucleosides, Nucleotides, and Nucleic Acids, and Uses
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Thereof and International Publication No. PCT/US2012/
69610, filed Dec. 14, 2012, entitled Modified Nucleoside,
Nucleotide, and Nucleic Acid Compositions.

The instant application is also related to co-pending appli-
cations, each filed concurrently herewith on Mar. 9, 2013,
(PCT/US13/030062) entitled Modified Polynucleotides for
the Production of Biologics and Proteins Associated with
Human Disease; (PCT/US13/030064), entitled Modified
Polynucleotides for the Production of Secreted Proteins;
(PCT/US13/030059), entitled Modified Polynucleotides for
the Production of Membrane Proteins; (PCT/US13/030066),
entitled Modified Polynucleotides for the Production of Cyto-
plasmic and Cytoskeletal Proteins; (PCT/US13/030063),
entitled Modified Polynucleotides for the Production of Pro-
teins; (PCT/US13/030060), entitled Modified Polynucle-
otides for the Production of Proteins; (PCT/US13/030061),
entitled Modified Polynucleotides for the Production of Pro-
teins Associated with Human Disease; (PCT/US13/030068),
entitled Modified Polynucleotides for the Production of Cos-
metic Proteins and Peptides and (PCT/US13/030070),
entitled Modified Polynucleotides for the Production of
Oncology-Related Proteins and Peptides, the contents of each
of which are herein incorporated by reference in its entirety.

REFERENCE TO SEQUENCE LISTING

The present application is being filed along with a
Sequence Listing in electronic format. The Sequence Listing
file entitled M308USCONSEQLST.txt, was created on Dec.
11, 2013 and is 67,238,372 bytes in size. The information in
electronic format of the Sequence Listing is incorporated
herein by reference in its entirety.

REFERENCE TO LENGTHY TABLE

The specification includes a lengthy Table 6. Lengthy
Table 6 has been submitted via EFS-Web in electronic format
as follows: File name: M308TBL.txt, Date created: Dec. 11,
2013; File size: 425,217 Bytes and is incorporated herein by
reference in its entirety. Please refer to the end of the speci-
fication for access instructions.
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daughter cells (whether or not the heterologous DNA has
integrated into the chromosome) or by offspring.

In addition, assuming proper delivery and no damage or
integration into the host genome, there are multiple steps
which must occur before the encoded protein is made. Once
inside the cell, DNA must be transported into the nucleus
where it is transcribed into RNA. The RNA transcribed from
DNA must then enter the cytoplasm where it is translated into
protein. Not only do the multiple processing steps from
administered DNA to protein create lag times before the
generation of the functional protein, each step represents an
opportunity for error and damage to the cell. Further, it is
known to be difficult to obtain DNA expression in cells as
DNA frequently enters a cell but is not expressed or not
expressed at reasonable rates or concentrations. This canbe a
particular problem when DNA is introduced into primary
cells or modified cell lines.

In the early 1990’s Bloom and colleagues successfully
rescued vasopressin-deficient rats by injecting in vitro-tran-
scribed vasopressin mRNA into the hypothalamus (Science
255: 996-998; 1992). However, the low levels of translation
and the immunogenicity of the molecules hampered the
development of mRNA as a therapeutic and efforts have since
focused on alternative applications that could instead exploit
these pitfalls, i.e. immunization with mRNAs coding for can-
cer antigens.

Others have investigated the use of mRNA to deliver a
polypeptide of interest and shown that certain chemical modi-
fications of mRNA molecules, particularly pseudouridine and
5-methyl-cytosine, have reduced immunostimulatory effect.

These studies are disclosed in, for example, Ribostem Lim-
ited in United Kingdom patent application serial number
0316089.2 filed on Jul. 9, 2003 now abandoned, PCT appli-
cation number PCT/GB2004/002981 filed on Jul. 9, 2004
published as W02005005622, U.S. patent application
national phase entry Ser. No. 10/563,897 filed on Jun. 8, 2006
published as US20060247195 now abandoned, and European
patent application national phase entry serial number
EP2004743322 filed on Jul. 9, 2004 published as EP1646714
now withdrawn; Novozymes, Inc. in PCT application number

LENGTHY TABLES

The patent contains a lengthy table section. A copy of the table is available in electronic form from the

USPTO web

site  (http://seqdata.uspto.gov/?pageRequest=docDetail&DocID=US09050297B2). An electronic copy

of the table will also be available from the USPTO upon request and payment of the fee set forth in 37 CFR 1.19(b)(3).

FIELD OF THE INVENTION

The invention relates to compositions, methods, processes,
kits and devices for the design, preparation, manufacture
and/or formulation of polynucleotides, primary constructs
and modified mRNA molecules (mmRNA).

BACKGROUND OF THE INVENTION

There are multiple problems with prior methodologies of
effecting protein expression. For example, introduced DNA
can integrate into host cell genomic DNA at some frequency,
resulting in alterations and/or damage to the host cell
genomic DNA. Alternatively, the heterologous deoxyribo-
nucleic acid (DNA) introduced into a cell can be inherited by
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PCT/US2007/88060 filed on Dec. 19, 2007 published as
WO02008140615, U.S. patent application national phase
entry Ser. No. 12/520,072 filed on Jul. 2, 2009 published as
US20100028943 and European patent application national
phase entry serial number EP2007874376 filed on Jul. 7,
2009 published as EP2104739; University of Rochester in
PCT application number PCT/US2006/46120 filed on Dec. 4,
2006 published as W0O2007064952 and U.S. patent applica-
tion Ser. No. 11/606,995 filed on Dec. 1, 2006 published as
US20070141030; BioNTech AG in European patent applica-
tion serial number EP2007024312 filed Dec. 14, 2007 now
abandoned, PCT application number PCT/EP2008/01059
filed on Dec. 12, 2008 published as W02009077134, Euro-
pean patent application national phase entry serial number
EP2008861423 filed on Jun. 2, 2010 published as
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EP2240572, U.S. patent application national phase entry Ser.
No. 12/735,060 filed Nov. 24, 2010 published as
US20110065103, German patent application serial number
DE 10 2005 046 490 filed Sep. 28, 2005, PCT application
PCT/EP2006/0448 filed Sep. 28, 2006 published as
WO02007036366, national phase Furopean patent
EP1934345 published Mar. 21, 2012 and national phase U.S.
patent application Ser. No. 11/992,638 filed Aug. 14, 2009
published as 20100129877; Immune Disease Institute Inc. in
U.S. patent application Ser. No. 13/088,009 filed Apr. 15,
2011 published as US20120046346 and PCT application
PCT/US2011/32679 filed Apr. 15, 2011 published as
WO020110130624; Shire Human Genetic Therapeutics in
U.S. patent application Ser. No. 12/957,340 filed on Nov. 20,
2010 published as US20110244026; Sequitur Inc. in PCT
application PCT/US1998/019492 filed on Sep. 18, 1998 pub-
lished as W(01999014346; The Scripps Research Institute in
PCT application number PCT/US2010/00567 filed on Feb.
24, 2010 published as W02010098861, and U.S. patent
application national phase entry Ser. No. 13/203,229 filed
Now. 3, 2011 published as US20120053333; Ludwig-Maxi-
millians University in PCT application number PCT/EP2010/
004681 filed on Jul. 30, 2010 published as W02011012316;
Cellscript Inc. in U.S. Pat. No. 8,039,214 filed Jun. 30, 2008
and granted Oct. 18, 2011, U.S. patent application Ser. No.
12/962,498 filed on Dec. 7, 2010 published as
US20110143436, Ser. No. 12/962,468 filed on Dec. 7, 2010
published as US20110143397, Ser. No. 13/237,451 filed on
Sep. 20, 2011 published as US20120009649, and PCT appli-
cations PCT/US2010/59305 filed Dec. 7, 2010 published as
W02011071931 and PCT/US2010/59317 filed on Dec. 7,
2010 published as W02011071936; The Trustees of the Uni-
versity of Pennsylvania in PCT application number PCT/
US2006/32372 filed on Aug. 21, 2006 published as
W02007024708, and U.S. patent application national phase
entry Ser. No. 11/990,646 filed on Mar. 27, 2009 published as
US20090286852; Curevac GMBH in German patent appli-
cation serial numbers DE10 2001 027 283.9 filed Jun. 5,
2001, DE10 2001 062 480.8 filed Dec. 19, 2001, and DE 20
2006 051 516 filed Oct. 31, 2006 all abandoned, European
patent numbers EP1392341 granted Mar. 30, 2005 and
EP1458410 granted Jan. 2, 2008, PCT application numbers
PCT/EP2002/06180 filed Jun. 5, 2002 published as
W02002098443, PCT/EP2002/14577 filed on Dec. 19, 2002
published as W0O2003051401, PCT/EP2007/09469 filed on
Dec. 31, 2007 published as WO2008052770, PCT/EP2008/
03033 filed on Apr. 16, 2008 published as W02009127230,
PCT/EP2006/004784 filed on May 19, 2005 published as
W02006122828, PCT/EP2008/00081 filed on Jan. 9, 2007
published as WO2008083949, and U.S. patent application
Ser. No. 10/729,830 filed on Dec. 5, 2003 published as
US20050032730, Ser. No. 10/870,110 filed on Jun. 18, 2004
published as US20050059624, Ser. No. 11/914,945 filed on
Jul. 7, 2008 published as US20080267873, Ser. No. 12/446,
912 filed on Oct. 27, 2009 published as US2010047261 now
abandoned, Ser. No. 12/522,214 filed on Jan. 4, 2010 pub-
lished as US20100189729, Ser. No. 12/787,566 filed on May
26, 2010 published as US20110077287, Ser. No. 12/787,755
filed on May 26, 2010 published as US20100239608, Ser. No.
13/185,119 filed on Jul. 18, 2011 published as
US20110269950, and Ser. No. 13/106,548 filed on May 12,
2011 published as US20110311472 all of which are herein
incorporated by reference in their entirety.

Notwithstanding these reports which are limited to a selec-
tion of chemical modifications including pseudouridine and
5-methyl-cytosine, there remains a need in the art for thera-
peutic modalities to address the myriad of barriers surround-
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ing the efficacious modulation of intracellular translation and
processing of nucleic acids encoding polypeptides or frag-
ments thereof.

To this end, the inventors have shown that certain modified
mRNA sequences have the potential as therapeutics with
benefits beyond just evading, avoiding or diminishing the
immune response. Such studies are detailed in published
co-pending applications International Application PCT/
US2011/046861 filed Aug. 5, 2011 and PCT/US2011/
054636 filed Oct. 3, 2011, International Application number
PCT/US2011/054617 filed Oct. 3, 2011, the contents of
which are incorporated herein by reference in their entirety.

The present invention addresses this need by providing
nucleic acid based compounds or polynucleotides which
encode a polypeptide of interest (e.g., modified mRNA or
mmRNA) and which have structural and/or chemical features
that avoid one or more of the problems in the art, for example,
features which are useful for optimizing formulation and
delivery of nucleic acid-based therapeutics while retaining
structural and functional integrity, overcoming the threshold
of expression, improving expression rates, half life and/or
protein concentrations, optimizing protein localization, and
avoiding deleterious bio-responses such as the immune
response and/or degradation pathways.

SUMMARY OF THE INVENTION

Described herein are compositions, methods, processes,
kits and devices for the design, preparation, manufacture
and/or formulation of modified mRNA (mmRNA) mol-
ecules.

The details of various embodiments of the invention are set
forth in the description below. Other features, objects, and
advantages of the invention will be apparent from the descrip-
tion and the drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
will be apparent from the following description of particular
embodiments of the invention, as illustrated in the accompa-
nying drawings in which like reference characters refer to the
same parts throughout the different views. The drawings are
not necessarily to scale, emphasis instead being placed upon
illustrating the principles of various embodiments of the
invention.

FIG. 1 is a schematic of a primary construct of the present
invention.

FIG. 2 illustrates lipid structures in the prior art useful in
the present invention. Shown are the structures for 98N12-5
(TETAS5-LAP), DLin-DMA, DLin-K-DMA (2,2-Dilinoleyl-
4-dimethylaminomethyl-[1,3]-dioxolane), DLin-KC2-
DMA, DLin-MC3-DMA and C12-200.

FIG. 3 is a representative plasmid useful in the IVT reac-
tions taught herein. The plasmid contains Insert 64818,
designed by the instant inventors.

FIG. 4 is a gel profile of modified mRNA encapsulated in
PLGA microspheres.

FIG. 5 is a histogram of Factor IX protein production
PLGA formulation Factor IX modified mRNA.

FIG. 6 is a histogram showing VEGF protein production in
human keratinocyte cells after transfection of modified
mRNA at a range of doses. FIG. 6 A shows protein production
after transfection of modified mRNA comprising natural
nucleoside triphosphate (NTP). FIG. 6B shows protein pro-
duction after transfection of modified mRNA fully modified
with pseudouridine (Pseudo-U) and S5-methylcytosine
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(5mC). FIG. 6C shows protein production after transfection
of modified mRNA fully modified with N1-methyl-pseudou-
ridine (N1-methyl-Pseudo-U) and 5-methylcytosine (SmC).

FIG. 7 is a histogram of VEGF protein production in
HEK?293 cells.

FIG. 8 is a histogram of VEGF expression and IFN-alpha
induction after transfection of VEGF modified mRNA in
peripheral blood mononuclear cells (PBMC). FIG. 8A shows
VEGF expression. FIG. 8B shows [FN-alpha induction.

FIG. 9 is a histogram of VEGF protein production in HelLa
cells from VEGF modified mRNA.

FIG. 10 is a histogram of VEGF protein production from
lipoplexed VEGF modified mRNA in mice.

FIG. 11 is a histogram of G-CSF protein production in
HeLa cells from G-CSF modified mRNA.

FIG. 12 is a histogram of Factor IX protein production in
Hel a cell supernatant from Factor IX modified mRNA.

DETAILED DESCRIPTION

It is of great interest in the fields of therapeutics, diagnos-
tics, reagents and for biological assays to be able to deliver a
nucleic acid, e.g., a ribonucleic acid (RNA) inside a cell,
whether in vitro, in vivo, in situ or ex vivo, such as to cause
intracellular translation of the nucleic acid and production of
an encoded polypeptide of interest. Of particular importance
is the delivery and function of a non-integrative polynucle-
otide.

Described herein are compositions (including pharmaceu-
tical compositions) and methods for the design, preparation,
manufacture and/or formulation of polynucleotides encoding
one or more polypeptides of interest. Also provided are sys-
tems, processes, devices and kits for the selection, design
and/or utilization of the polynucleotides encoding the
polypeptides of interest described herein.

According to the present invention, these polynucleotides
are preferably modified as to avoid the deficiencies of other
polypeptide-encoding molecules of the art. Hence these poly-
nucleotides are referred to as modified mRNA or mmRNA.

The use of modified polynucleotides in the fields of anti-
bodies, viruses, veterinary applications and a variety of in
vivo settings has been explored by the inventors and these
studies are disclosed in for example, co-pending and co-
owned U.S. provisional patent application Ser. Nos. 61/470,
451 filed Mar. 31, 2011 teaching in vivo applications of
mmRNA; 61/517,784 filed on Apr. 26, 2011 teaching engi-
neered nucleic acids for the production of antibody polypep-
tides; 61/519,158 filed May 17, 2011 teaching veterinary
applications of mmRNA technology; 61/533,537 filed on
Sep. 12, 2011 teaching antimicrobial applications of
mmRNA technology; 61/533,554 filed on Sep. 12, 2011
teaching viral applications of mmRNA technology, 61/542,
533 filed on Oct. 3, 2011 teaching various chemical modifi-
cations for use in mmRNA technology; 61/570,690 filed on
Dec. 14, 2011 teaching mobile devices for use in making or
using mmRNA technology; 61/570,708 filed on Dec. 14,
2011 teaching the use of mmRNA in acute care situations;
61/576,651 filed on Dec. 16, 2011 teaching terminal modifi-
cation architecture for mmRNA; 61/576,705 filed on Dec. 16,
2011 teaching delivery methods using lipidoids for mmRNA;
61/578,271 filed on Dec. 21, 2011 teaching methods to
increase the viability of organs or tissues using mmRNA;
61/581,322 filed on Dec. 29, 2011 teaching mmRNA encod-
ing cell penetrating peptides; 61/581,352 filed on Dec. 29,
2011 teaching the incorporation of cytotoxic nucleosides in
mmRNA and 61/631,729 filed on Jan. 10, 2012 teaching
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methods of using mmRNA for crossing the blood brain bar-
rier; all of which are herein incorporated by reference in their
entirety.

Provided herein, in part, are polynucleotides, primary con-
structs and/or mmRNA encoding polypeptides of interest
which have been designed to improve one or more of the
stability and/or clearance in tissues, receptor uptake and/or
kinetics, cellular access by the compositions, engagement
with translational machinery, mRNA half-life, translation
efficiency, immune evasion, protein production capacity,
secretion efficiency (when applicable), accessibility to circu-
lation, protein half-life and/or modulation of a cell’s status,
function and/or activity.

1. COMPOSITIONS OF THE INVENTION
(mmRNA)

The present invention provides nucleic acid molecules,
specifically polynucleotides, primary constructs and/or
mmRNA which encode one or more polypeptides of interest.
The term “nucleic acid,” in its broadest sense, includes any
compound and/or substance that comprise a polymer of
nucleotides. These polymers are often referred to as poly-
nucleotides. Exemplary nucleic acids or polynucleotides of
the invention include, but are not limited to, ribonucleic acids
(RNAs), deoxyribonucleic acids (DNAs), threose nucleic
acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic
acids (PNAs), locked nucleic acids (LNAs, including LNA
having a -D-ribo configuration, a.-LNA having an a-L-ribo
configuration (a diastereomer of LNA), 2'-amino-LNA hav-
ing a 2'-amino functionalization, and 2'-amino-c.-LNA hav-
ing a 2'-amino functionalization) or hybrids thereof.

In preferred embodiments, the nucleic acid molecule is a
messenger RNA (mRNA). As used herein, the term “messen-
ger RNA” (mRNA) refers to any polynucleotide which
encodes a polypeptide of interest and which is capable of
being translated to produce the encoded polypeptide of inter-
est in vitro, in vivo, in situ or ex vivo.

Traditionally, the basic components of an mRNA molecule
include at least a coding region, a S'UTR, a 3'UTR, a 5' cap
and a poly-A tail. Building on this wild type modular struc-
ture, the present invention expands the scope of functionality
oftraditional mRNA molecules by providing polynucleotides
or primary RNA constructs which maintain a modular orga-
nization, but which comprise one or more structural and/or
chemical modifications or alterations which impart useful
properties to the polynucleotide including, in some embodi-
ments, the lack of a substantial induction of the innate
immune response of a cell into which the polynucleotide is
introduced. As such, modified mRNA molecules of the
present invention are termed “mmRNA.” As used herein, a
“structural” feature or modification is one in which two or
more linked nucleotides are inserted, deleted, duplicated,
inverted or randomized in a polynucleotide, primary con-
struct or mmRNA without significant chemical modification
to the nucleotides themselves. Because chemical bonds will
necessarily be broken and reformed to effect a structural
modification, structural modifications are of a chemical
nature and hence are chemical modifications. However, struc-
tural modifications will result in a different sequence of
nucleotides. For example, the polynucleotide “ATCG” may
be chemically modified to “AT-5meC-G”. The same poly-
nucleotide may be structurally modified from “ATCG” to
“ATCCCG”. Here, the dinucleotide “CC” has been inserted,
resulting in a structural modification to the polynucleotide.
mmRNA Architecture
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The mmRNA of the present invention are distinguished
from wild type mRNA in their functional and/or structural
design features which serve to, as evidenced herein, over-
come existing problems of effective polypeptide production
using nucleic acid-based therapeutics.

FIG. 1 shows a representative polynucleotide primary con-
struct 100 of the present invention. As used herein, the term
“primary construct” or “primary mRNA construct” refers to a
polynucleotide transcript which encodes one or more
polypeptides of interest and which retains sufficient structural
and/or chemical features to allow the polypeptide of interest
encoded therein to be translated. Primary constructs may be
polynucleotides of the invention. When structurally or chemi-
cally modified, the primary construct may be referred to as an
mmRNA.

Returning to FIG. 1, the primary construct 100 here con-
tains a first region of linked nucleotides 102 that is flanked by
afirst flanking region 104 and a second flaking region 106. As
used herein, the “first region” may be referred to as a “coding
region” or “region encoding” or simply the “first region.” This
first region may include, but is not limited to, the encoded
polypeptide of interest. The polypeptide of interest may com-
prise at its 5' terminus one or more signal sequences encoded
by asignal sequence region 103. The flanking region 104 may
comprise a region of linked nucleotides comprising one or
more complete or incomplete 5' UTRs sequences. The flank-
ing region 104 may also comprise a 5' terminal cap 108. The
second flanking region 106 may comprise a region of linked
nucleotides comprising one or more complete or incomplete
3' UTRs. The flanking region 106 may also comprise a 3'
tailing sequence 110.

Bridging the 5' terminus of the first region 102 and the first
flanking region 104 is a first operational region 105. Tradi-
tionally this operational region comprises a Start codon. The
operational region may alternatively comprise any translation
initiation sequence or signal including a Start codon.

Bridging the 3' terminus of the first region 102 and the
second flanking region 106 is a second operational region
107. Traditionally this operational region comprises a Stop
codon. The operational region may alternatively comprise
any translation initiation sequence or signal including a Stop
codon. According to the present invention, multiple serial
stop codons may also be used.

Generally, the shortest length of the first region of the
primary construct ofthe present invention can be the length of
a nucleic acid sequence that is sufficient to encode for a
dipeptide, a tripeptide, a tetrapeptide, a pentapeptide, a
hexapeptide, a heptapeptide, an octapeptide, a nonapeptide,
or a decapeptide. In another embodiment, the length may be
sufficient to encode a peptide of 2-30 amino acids, e.g. 5-30,
10-30, 2-25, 5-25, 10-25, or 10-20 amino acids. The length
may be sufficient to encode for a peptide of at least 11, 12, 13,
14,15, 17, 20, 25 or 30 amino acids, or a peptide that is no
longer than 40 amino acids, e.g. no longer than 35, 30, 25, 20,
17,15,14,13,12, 11 or 10 amino acids. Examples of dipep-
tides that the polynucleotide sequences can encode or
include, but are not limited to, carnosine and anserine.

Generally, the length of the first region encoding the
polypeptide of interest of the present invention is greater than
about 30 nucleotides in length (e.g., at least or greater than
about 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160,
180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900,
1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800,
1,900, 2,000, 2,500, and 3,000, 4,000, 5,000, 6,000, 7,000,
8,000, 9,000, 10,000, 20,000, 30,000, 40,000, 50,000,
60,000, 70,000, 80,000, 90,000 or up to and including 100,
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000 nucleotides). As used herein, the “first region” may be
referred to as a “coding region” or “region encoding” or
simply the “first region.”

In some embodiments, the polynucleotide, primary con-
struct, or mmRNA includes from about 30 to about 100,000
nucleotides (e.g., from 30 to 50, from 30 to 100, from 30 to
250, from 30 to 500, from 30 to 1,000, from 30 to 1,500, from
30 to 3,000, from 30 to 5,000, from 30 to 7,000, from 30 to
10,000, from 30 to 25,000, from 30 to 50,000, from 30 to
70,000, from 100 to 250, from 100 to 500, from 100 to 1,000,
from 100 to 1,500, from 100 to 3,000, from 100 to 5,000, from
100 to 7,000, from 100 to 10,000, from 100 to 25,000, from
100 to 50,000, from 100 to 70,000, from 100 to 100,000, from
500 to 1,000, from 500 to 1,500, from 500 to 2,000, from 500
to 3,000, from 500 to 5,000, from 500 to 7,000, from 500 to
10,000, from 500 to 25,000, from 500 to 50,000, from 500 to
70,000, from 500 to 100,000, from 1,000to 1,500, from 1,000
to 2,000, from 1,000 to 3,000, from 1,000 to 5,000, from
1,000 to 7,000, from 1,000 to 10,000, from 1,000 to 25,000,
from 1,000 to 50,000, from 1,000 to 70,000, from 1,000 to
100,000, from 1,500 to 3,000, from 1,500 to 5,000, from
1,500 to 7,000, from 1,500 to 10,000, from 1,500 to 25,000,
from 1,500 to 50,000, from 1,500 to 70,000, from 1,500 to
100,000, from 2,000 to 3,000, from 2,000 to 5,000, from
2,000 to 7,000, from 2,000 to 10,000, from 2,000 to 25,000,
from 2,000 to 50,000, from 2,000 to 70,000, and from 2,000
to 100,000).

According to the present invention, the first and second
flanking regions may range independently from 15-1,000
nucleotides in length (e.g., greater than 30, 40, 45, 50, 55, 60,
70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400,
450, 500, 600, 700, 800, and 900 nucleotides or at least 30, 40,
45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250,
300,350, 400, 450, 500, 600, 700, 800, 900, and 1,000 nucle-
otides).

According to the present invention, the tailing sequence
may range from absent to 500 nucleotides in length (e.g., at
least 60, 70, 80, 90, 120, 140, 160, 180, 200, 250, 300, 350,
400, 450, or 500 nucleotides). Where the tailing region is a
polyA tail, the length may be determined in units of or as a
function of polyA Binding Protein binding. In this embodi-
ment, the polyA tail is long enough to bind at least 4 mono-
mers of PolyA Binding Protein. PolyA Binding Protein
monomers bind to stretches of approximately 38 nucleotides.
As such, it has been observed that polyA tails of about 80
nucleotides and 160 nucleotides are functional.

According to the present invention, the capping region may
comprise a single cap or a series of nucleotides forming the
cap. In this embodiment the capping region may be from 1 to
10, e.g. 2-9, 3-8, 4-7, 1-5, 5-10, or at least 2, or 10 or fewer
nucleotides in length. In some embodiments, the cap is
absent.

According to the present invention, the first and second
operational regions may range from 3 to 40, e.g., 5-30, 10-20,
15, or at least 4, or 30 or fewer nucleotides in length and may
comprise, in addition to a Start and/or Stop codon, one or
more signal and/or restriction sequences.

Cyclic mmRNA

According to the present invention, a primary construct or
mmRNA may be cyclized, or concatemerized, to generate a
translation competent molecule to assist interactions between
poly-A binding proteins and 5'-end binding proteins. The
mechanism of cyclization or concatemerization may occur
through at least 3 different routes: 1) chemical, 2) enzymatic,
and 3) ribozyme catalyzed. The newly formed 5'-/3'-linkage
may be intramolecular or intermolecular.
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In the first route, the 5'-end and the 3'-end of the nucleic
acid contain chemically reactive groups that, when close
together, form a new covalent linkage between the 5'-end and
the 3'-end of the molecule. The 5'-end may contain an NHS-
ester reactive group and the 3'-end may contain a 3'-amino-
terminated nucleotide such that in an organic solvent the
3'-amino-terminated nucleotide on the 3'-end of a synthetic
mRNA molecule will undergo a nucleophilic attack on the
5'-NHS-ester moiety forming a new 5'-/3'-amide bond.

In the second route, T4 RNA ligase may be used to enzy-
matically link a 5'-phosphorylated nucleic acid molecule to
the 3'-hydroxyl group of a nucleic acid forming a new phos-
phorodiester linkage. In an example reaction, 1 pg ofa nucleic
acid molecule is incubated at 37° C. for 1 hour with 1-10 units
of T4 RNA ligase (New England Biolabs, Ipswich, Mass.)
according to the manufacturer’s protocol. The ligation reac-
tion may occur in the presence of a split oligonucleotide
capable of base-pairing with both the 5'- and 3'-region in
juxtaposition to assist the enzymatic ligation reaction.

In the third route, either the 5'- or 3'-end of the ¢cDNA
template encodes a ligase ribozyme sequence such that dur-
ing in vitro transcription, the resultant nucleic acid molecule
can contain an active ribozyme sequence capable of ligating
the 5'-end of a nucleic acid molecule to the 3'-end of a nucleic
acid molecule. The ligase ribozyme may be derived from the
Group I Intron, Group I Intron, Hepatitis Delta Virus, Hairpin
ribozyme or may be selected by SELEX (systematic evolu-
tion of ligands by exponential enrichment). The ribozyme
ligase reaction may take 1 to 24 hours at temperatures
between 0 and 37° C.
mmRNA Multimers

According to the present invention, multiple distinct poly-
nucleotides, primary constructs or mmRNA may be linked
together through the 3'-end using nucleotides which are
modified at the 3'-terminus. Chemical conjugation may be
used to control the stoichiometry of delivery into cells. For
example, the glyoxylate cycle enzymes, isocitrate lyase and
malate synthase, may be supplied into HepG2 cells at a 1:1
ratio to alter cellular fatty acid metabolism. This ratio may be
controlled by chemically linking polynucleotides, primary
constructs or mmRNA using a 3'-azido terminated nucleotide
on one polynucleotide, primary construct or mmRNA species
and a C5-ethynyl or alkynyl-containing nucleotide on the
opposite polynucleotide, primary construct or mmRNA spe-
cies. The modified nucleotide is added post-transcriptionally
using terminal transferase (New England Biolabs, Ipswich,
Mass.) according to the manufacturer’s protocol. After the
addition of the 3'-modified nucleotide, the two polynucle-
otide, primary construct or mmRNA species may be com-
bined in an aqueous solution, in the presence or absence of
copper, to form a new covalent linkage via a click chemistry
mechanism as described in the literature.

In another example, more than two polynucleotides may be
linked together using a functionalized linker molecule. For
example, a functionalized saccharide molecule may be
chemically modified to contain multiple chemical reactive
groups (SH—, NH,—, N3, etc. . . . ) to react with the cognate
moiety on a 3'-functionalized mRNA molecule (i.e., a 3'-ma-
leimide ester, 3'-NHS-ester, alkynyl). The number of reactive
groups on the modified saccharide can be controlled in a
stoichiometric fashion to directly control the stoichiometric
ratio of conjugated polynucleotide, primary construct or
mmRNA.
mmRNA Conjugates and Combinations

In order to further enhance protein production, primary
constructs or mmRNA of the present invention can be
designed to be conjugated to other polynucleotides, dyes,
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intercalating agents (e.g. acridines), cross-linkers (e.g. psor-
alene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sap-
phyrin), polycyclic aromatic hydrocarbons (e.g., phenazine,
dihydrophenazine), artificial endonucleases (e.g. EDTA),
alkylating agents, phosphate, amino, mercapto, PEG (e.g.,
PEG-40K), MPEG, [MPEG],, polyamino, alkyl, substituted
alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin),
transport/absorption facilitators (e.g., aspirin, vitamin E, folic
acid), synthetic ribonucleases, proteins, e.g., glycoproteins,
or peptides, e.g., molecules having a specific affinity for a
co-ligand, or antibodies e.g., an antibody, that binds to a
specified cell type such as a cancer cell, endothelial cell, or
bone cell, hormones and hormone receptors, non-peptidic
species, such as lipids, lectins, carbohydrates, vitamins,
cofactors, or a drug.

Conjugation may result in increased stability and/or half
life and may be particularly useful in targeting the polynucle-
otides, primary constructs or mmRNA to specific sites in the
cell, tissue or organism.

According to the present invention, the mmRNA or pri-
mary constructs may be administered with, or further encode
one or more of RNAIi agents, siRNAs, shRNAs, miRNAs,
miRNA binding sites, antisense RNAs, ribozymes, catalytic
DNA, tRNA, RNAs that induce triple helix formation, aptam-
ers or vectors, and the like.

Bifunctional mmRNA

In one embodiment of the invention are bifunctional poly-
nucleotides (e.g., bifunctional primary constructs or bifunc-
tional mmRNA). As the name implies, bifunctional poly-
nucleotides are those having or capable of at least two
functions. These molecules may also by convention be
referred to as multi-functional.

The multiple functionalities of bifunctional polynucle-
otides may be encoded by the RNA (the function may not
manifest until the encoded product is translated) or may be a
property of the polynucleotide itself. It may be structural or
chemical. Bifunctional modified polynucleotides may com-
prise a function that is covalently or electrostatically associ-
ated with the polynucleotides. Further, the two functions may
be provided in the context of a complex of a mmRNA and
another molecule.

Bifunctional polynucleotides may encode peptides which
are anti-proliferative. These peptides may be linear, cyclic,
constrained or random coil. They may function as aptamers,
signaling molecules, ligands or mimics or mimetics thereof.
Anti-proliferative peptides may, as translated, be from 3 to 50
amino acids in length. They may be 5-40, 10-30, or approxi-
mately 15 amino acids long. They may be single chain, mul-
tichain or branched and may form complexes, aggregates or
any multi-unit structure once translated.

Noncoding Polynucleotides and Primary Constructs

As described herein, provided are polynucleotides and pri-
mary constructs having sequences that are partially or sub-
stantially not translatable, e.g., having a noncoding region.
Such noncoding region may be the “first region™ of the pri-
mary construct. Alternatively, the noncoding region may be a
region other than the first region. Such molecules are gener-
ally not translated, but can exert an effect on protein produc-
tion by one or more of binding to and sequestering one or
more translational machinery components such as a riboso-
mal protein or a transfer RNA (tRNA), thereby effectively
reducing protein expression in the cell or modulating one or
more pathways or cascades in a cell which in turn alters
protein levels. The polynucleotide or primary construct may
contain or encode one or more long noncoding RNA (In-
cRNA, or lincRNA) or portion thereof, a small nucleolar
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RNA (sno-RNA), micro RNA (miRNA), small interfering
RNA (siRNA) or Piwi-interacting RNA (piRNA).
Polypeptides of Interest

According to the present invention, the primary construct is
designed to encode one or more polypeptides of interest or
fragments thereof. A polypeptide of interest may include, but
is not limited to, whole polypeptides, a plurality of polypep-
tides or fragments of polypeptides, which independently may
be encoded by one or more nucleic acids, a plurality of nucleic
acids, fragments of nucleic acids or variants of any of the
aforementioned. As used herein, the term “polypeptides of
interest” refer to any polypeptide which is selected to be
encoded in the primary construct of the present invention. As
used herein, “polypeptide” means a polymer of amino acid
residues (natural or unnatural) linked together most often by
peptide bonds. The term, as used herein, refers to proteins,
polypeptides, and peptides of any size, structure, or function.
In some instances the polypeptide encoded is smaller than
about 50 amino acids and the polypeptide is then termed a
peptide. Ifthe polypeptide is a peptide, it will be at least about
2,3, 4, or at least 5 amino acid residues long. Thus, polypep-
tides include gene products, naturally occurring polypep-
tides, synthetic polypeptides, homologs, orthologs, paralogs,
fragments and other equivalents, variants, and analogs of the
foregoing. A polypeptide may be a single molecule or may be
a multi-molecular complex such as a dimer, trimer or tet-
ramer. They may also comprise single chain or multichain
polypeptides such as antibodies or insulin and may be asso-
ciated or linked. Most commonly disulfide linkages are found
in multichain polypeptides. The term polypeptide may also
apply to amino acid polymers in which one or more amino
acid residues are an artificial chemical analogue of a corre-
sponding naturally occurring amino acid.

The term “polypeptide variant” refers to molecules which
differ in their amino acid sequence from a native or reference
sequence. The amino acid sequence variants may possess
substitutions, deletions, and/or insertions at certain positions
within the amino acid sequence, as compared to a native or
reference sequence. Ordinarily, variants will possess at least
about 50% identity (homology) to a native or reference
sequence, and preferably, they will be at least about 80%,
more preferably at least about 90% identical (homologous) to
a native or reference sequence.

In some embodiments “variant mimics” are provided. As
used herein, the term “variant mimic” is one which contains
one or more amino acids which would mimic an activated
sequence. For example, glutamate may serve as a mimic for
phosphoro-threonine and/or phosphoro-serine. Alternatively,
variant mimics may result in deactivation or in an inactivated
product containing the mimic, e.g., phenylalanine may act as
an inactivating substitution for tyrosine; or alanine may act as
an inactivating substitution for serine.

“Homology” as it applies to amino acid sequences is
defined as the percentage of residues in the candidate amino
acid sequence that are identical with the residues in the amino
acid sequence of a second sequence after aligning the
sequences and introducing gaps, if necessary, to achieve the
maximum percent homology. Methods and computer pro-
grams for the alignment are well known in the art. It is under-
stood that homology depends on a calculation of percent
identity but may differ in value due to gaps and penalties
introduced in the calculation.

By “homologs™ as it applies to polypeptide sequences
means the corresponding sequence of other species having
substantial identity to a second sequence of a second species.

“Analogs” is meant to include polypeptide variants which
differ by one or more amino acid alterations, e.g., substitu-
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tions, additions or deletions of amino acid residues that still
maintain one or more of the properties of the parent or starting
polypeptide.

The present invention contemplates several types of com-
positions which are polypeptide based including variants and
derivatives. These include substitutional, insertional, deletion
and covalent variants and derivatives. The term “derivative” is
used synonymously with the term “variant” but generally
refers to a molecule that has been modified and/or changed in
any way relative to a reference molecule or starting molecule.

As such, mmRNA encoding polypeptides containing sub-
stitutions, insertions and/or additions, deletions and covalent
modifications with respect to reference sequences, in particu-
lar the polypeptide sequences disclosed herein, are included
within the scope of this invention. For example, sequence tags
or amino acids, such as one or more lysines, can be added to
the peptide sequences of the invention (e.g., at the N-terminal
or C-terminal ends). Sequence tags can be used for peptide
purification or localization. Lysines can be used to increase
peptide solubility or to allow for biotinylation. Alternatively,
amino acid residues located at the carboxy and amino termi-
nal regions of the amino acid sequence of a peptide or protein
may optionally be deleted providing for truncated sequences.
Certain amino acids (e.g., C-terminal or N-terminal residues)
may alternatively be deleted depending on the use of the
sequence, as for example, expression of the sequence as part
of a larger sequence which is soluble, or linked to a solid
support.

“Substitutional variants” when referring to polypeptides
are those that have at least one amino acid residue in a native
or starting sequence removed and a different amino acid
inserted in its place at the same position. The substitutions
may be single, where only one amino acid in the molecule has
been substituted, or they may be multiple, where two or more
amino acids have been substituted in the same molecule.

As used herein the term “conservative amino acid substi-
tution” refers to the substitution of an amino acid that is
normally present in the sequence with a different amino acid
of similar size, charge, or polarity. Examples of conservative
substitutions include the substitution of a non-polar (hydro-
phobic) residue such as isoleucine, valine and leucine for
another non-polar residue. Likewise, examples of conserva-
tive substitutions include the substitution of one polar (hydro-
philic) residue for another such as between arginine and
lysine, between glutamine and asparagine, and between gly-
cine and serine. Additionally, the substitution of a basic resi-
due such as lysine, arginine or histidine for another, or the
substitution of one acidic residue such as aspartic acid or
glutamic acid for another acidic residue are additional
examples of conservative substitutions. Examples of non-
conservative substitutions include the substitution of a non-
polar (hydrophobic) amino acid residue such as isoleucine,
valine, leucine, alanine, methionine for a polar (hydrophilic)
residue such as cysteine, glutamine, glutamic acid or lysine
and/or a polar residue for a non-polar residue.

“Insertional variants” when referring to polypeptides are
those with one or more amino acids inserted immediately
adjacent to an amino acid at a particular position in a native or
starting sequence. “Immediately adjacent” to an amino acid
means connected to either the alpha-carboxy or alpha-amino
functional group of the amino acid.

“Deletional variants” when referring to polypeptides are
those with one or more amino acids in the native or starting
amino acid sequence removed. Ordinarily, deletional variants
will have one or more amino acids deleted in a particular
region of the molecule.
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“Covalent derivatives” when referring to polypeptides
include modifications of a native or starting protein with an
organic proteinaceous or non-proteinaceous derivatizing
agent, and/or post-translational modifications. Covalent
modifications are traditionally introduced by reacting tar-
geted amino acid residues of the protein with an organic
derivatizing agent that is capable of reacting with selected
side-chains or terminal residues, or by harnessing mecha-
nisms of post-translational modifications that function in
selected recombinant host cells. The resultant covalent
derivatives are useful in programs directed at identifying resi-
dues important for biological activity, for immunoassays, or
for the preparation of anti-protein antibodies for immunoat-
finity purification of the recombinant glycoprotein. Such
modifications are within the ordinary skill in the art and are
performed without undue experimentation.

Certain post-translational modifications are the result of
the action of recombinant host cells on the expressed
polypeptide. Glutaminyl and asparaginyl residues are fre-
quently post-translationally deamidated to the corresponding
glutamyl and aspartyl residues. Alternatively, these residues
are deamidated under mildly acidic conditions. Either form of
these residues may be present in the polypeptides produced in
accordance with the present invention.

Other post-translational modifications include hydroxyla-
tion of proline and lysine, phosphorylation of hydroxyl
groups of seryl or threonyl residues, methylation of the alpha-
amino groups of lysine, arginine, and histidine side chains (T.
E. Creighton, Proteins: Structure and Molecular Properties,
W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)).

“Features” when referring to polypeptides are defined as
distinct amino acid sequence-based components of a mol-
ecule. Features of the polypeptides encoded by the mmRNA
of'the present invention include surface manifestations, local
conformational shape, folds, loops, half-loops, domains,
half-domains, sites, termini or any combination thereof.

As used herein when referring to polypeptides the term
“surface manifestation” refers to a polypeptide based com-
ponent of a protein appearing on an outermost surface.

As used herein when referring to polypeptides the term
“local conformational shape” means a polypeptide based
structural manifestation of a protein which is located within a
definable space of the protein.

As used herein when referring to polypeptides the term
“fold” refers to the resultant conformation of an amino acid
sequence upon energy minimization. A fold may occur at the
secondary or tertiary level of the folding process. Examples of
secondary level folds include beta sheets and alpha helices.
Examples of tertiary folds include domains and regions
formed due to aggregation or separation of energetic forces.
Regions formed in this way include hydrophobic and hydro-
philic pockets, and the like.

As used herein the term “turn” as it relates to protein
conformation means a bend which alters the direction of the
backbone of a peptide or polypeptide and may involve one,
two, three or more amino acid residues.

As used herein when referring to polypeptides the term
“loop” refers to a structural feature of a polypeptide which
may serveto reverse the direction of the backbone of a peptide
or polypeptide. Where the loop is found in a polypeptide and
only alters the direction ofthe backbone, it may comprise four
or more amino acid residues. Oliva et al. have identified at
least 5 classes of protein loops (J. Mol. Biol 266 (4): 814-830;
1997). Loops may be open or closed. Closed loops or “cyclic”
loops may comprise 2, 3, 4, 5, 6, 7, 8, 9, 10 or more amino
acids between the bridging moieties. Such bridging moieties
may comprise a cysteine-cysteine bridge (Cys-Cys) typical in
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polypeptides having disulfide bridges or alternatively bridg-
ing moieties may be non-protein based such as the dibro-
mozylyl agents used herein.

As used herein when referring to polypeptides the term
“half-loop” refers to a portion of an identified loop having at
least half the number of amino acid resides as the loop from
which it is derived. It is understood that loops may not always
contain an even number of amino acid residues. Therefore, in
those cases where a loop contains or is identified to comprise
an odd number of amino acids, a half-loop of the odd-num-
bered loop will comprise the whole number portion or next
whole number portion of the loop (number of amino acids of
the loop/2+4/-0.5 amino acids). For example, a loop identified
as a 7 amino acid loop could produce half-loops of 3 amino
acids or 4 amino acids (7/2=3.5+/-0.5 being 3 or 4).

As used herein when referring to polypeptides the term
“domain” refers to a motif of a polypeptide having one or
more identifiable structural or functional characteristics or
properties (e.g., binding capacity, serving as a site for protein-
protein interactions).

As used herein when referring to polypeptides the term
“half-domain” means a portion of an identified domain hav-
ing at least half the number of amino acid resides as the
domain from which it is derived. It is understood that domains
may not always contain an even number of amino acid resi-
dues. Therefore, in those cases where a domain contains or is
identified to comprise an odd number of amino acids, a half-
domain ofthe odd-numbered domain will comprise the whole
number portion or next whole number portion of the domain
(number of amino acids of the domain/2+/-0.5 amino acids).
For example, a domain identified as a 7 amino acid domain
could produce half-domains of 3 amino acids or 4 amino acids
(7/2=3.5+/-0.5 being 3 or 4). It is also understood that sub-
domains may be identified within domains or half-domains,
these subdomains possessing less than all of the structural or
functional properties identified in the domains or half
domains from which they were derived. It is also understood
that the amino acids that comprise any of the domain types
herein need not be contiguous along the backbone of the
polypeptide (i.e., nonadjacent amino acids may fold structur-
ally to produce a domain, half-domain or subdomain).

As used herein when referring to polypeptides the terms
“site” as it pertains to amino acid based embodiments is used
synonymously with “amino acid residue” and “amino acid
side chain.” A site represents a position within a peptide or
polypeptide that may be modified, manipulated, altered,
derivatized or varied within the polypeptide based molecules
of the present invention.

As used herein the terms “termini” or “terminus” when
referring to polypeptides refers to an extremity of a peptide or
polypeptide. Such extremity is not limited only to the first or
final site of the peptide or polypeptide but may include addi-
tional amino acids in the terminal regions. The polypeptide
based molecules of the present invention may be character-
ized as having both an N-terminus (terminated by an amino
acid with a free amino group (NH2)) and a C-terminus (ter-
minated by an amino acid with a free carboxyl group
(COOH)). Proteins of the invention are in some cases made
up of multiple polypeptide chains brought together by disul-
fide bonds or by non-covalent forces (multimers, oligomers).
These sorts of proteins will have multiple N- and C-termini.
Alternatively, the termini of the polypeptides may be modi-
fied such that they begin or end, as the case may be, with a
non-polypeptide based moiety such as an organic conjugate.

Once any of the features have been identified or defined as
a desired component of a polypeptide to be encoded by the
primary construct or mmRNA of the invention, any of several
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manipulations and/or modifications of these features may be
performed by moving, swapping, inverting, deleting, ran-
domizing or duplicating. Furthermore, it is understood that
manipulation of features may result in the same outcome as a
modification to the molecules of the invention. For example,
a manipulation which involved deleting a domain would
result in the alteration of the length of a molecule just as
modification of a nucleic acid to encode less than a full length
molecule would.

Modifications and manipulations can be accomplished by
methods known in the art such as, but not limited to, site
directed mutagenesis. The resulting modified molecules may
then be tested for activity using in vitro or in vivo assays such
as those described herein or any other suitable screening
assay known in the art.

According to the present invention, the polypeptides may
comprise a consensus sequence which is discovered through
rounds of experimentation. As used herein a “consensus”
sequence is a single sequence which represents a collective
population of sequences allowing for variability at one or
more sites.

As recognized by those skilled in the art, protein frag-
ments, functional protein domains, and homologous proteins
are also considered to be within the scope of polypeptides of
interest of this invention. For example, provided herein is any
protein fragment (meaning a polypeptide sequence at least
one amino acid residue shorter than a reference polypeptide
sequence but otherwise identical) of a reference protein 10,
20, 30, 40, 50, 60, 70, 80, 90, 100 or greater than 100 amino
acids in length. In another example, any protein that includes
a stretch of about 20, about 30, about 40, about 50, or about
100 amino acids which are about 40%, about 50%, about
60%, about 70%, about 80%, about 90%, about 95%, or about
100% identical to any of the sequences described herein can
be utilized in accordance with the invention. In certain
embodiments, a polypeptide to be utilized in accordance with
the invention includes 2, 3, 4, 5, 6, 7, 8, 9, 10, or more
mutations as shown in any of the sequences provided or
referenced herein.

Encoded Polypeptides

The primary constructs or mmRNA of the present inven-
tion may be designed to encode polypeptides of interest
selected from any of several target categories including, but
not limited to, biologics, antibodies, vaccines, therapeutic
proteins or peptides, cell penetrating peptides, secreted pro-
teins, plasma membrane proteins, cytoplasmic or cytoskeletal
proteins, intracellular membrane bound proteins, nuclear pro-
teins, proteins associated with human disease, targeting moi-
eties or those proteins encoded by the human genome for
which no therapeutic indication has been identified but which
nonetheless have utility in areas of research and discovery.

In one embodiment primary constructs or mmRNA may
encode variant polypeptides which have a certain identity
with a reference polypeptide sequence. As used herein, a
“reference polypeptide sequence” refers to a starting
polypeptide sequence. Reference sequences may be wild type
sequences or any sequence to which reference is made in the
design of another sequence. A “reference polypeptide
sequence” may, e.g., be any one of SEQ ID NOs: 3858-7559
as disclosed herein, e.g., any of SEQ ID NOs 3858, 3859,
3860,3861,3862,3863,3864,3865,3866,3867,3868,3869,
3870,3871,3872,3873,3874,3875,3876,3877,3878,3879,
3880,3881,3882,3883,3884,3885,3886,3887,3888,3889,
3890,3891,3892,3893,3894,3895,3896,3897,3898, 3899,
3900,3901,3902,3903, 3904, 3905, 3906, 3907,3908, 3909,
3910,3911,3912,3913,3914,3915,3916,3917,3918,3919,
3920,3921,3922,3923,3924,3925,3926,3927,3928,3929,
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3930,3931, 3932, 3933, 3934, 3935, 3936, 3937, 3938, 3939,
3940,3941, 3942, 3943, 3944, 3945, 3946, 3947, 3948, 3949,
3950,3951, 3952, 3953, 3954, 3955, 3956, 3957, 3958, 3959,
3960,3961, 3962, 3963, 3964, 3965, 3966, 3967, 3968, 3969,
3970,3971,3972,3973, 3974, 3975, 3976,3977, 3978, 3979,
3980,3981, 3982, 3983, 3984, 3985, 3986, 3987, 3988, 3989,
3990,3991, 3992, 3993, 3994, 3995, 3996, 3997, 3998, 3999,
4000, 4001, 4002, 4003, 4004, 4005, 4006, 4007, 4008, 4009,
4010,4011, 4012, 4013, 4014, 4015, 4016, 4017, 4018, 4019,
4020, 4021, 4022, 4023, 4024, 4025, 4026, 4027, 4028, 4029,
4030, 4031, 4032, 4033, 4034, 4035, 4036, 4037, 4038, 4039,
4040, 4041, 4042, 4043, 4044, 4045, 4046, 4047, 4048, 4049,
4050, 4051, 4052, 4053, 4054, 4055, 4056, 4057, 4058, 4059,
4060, 4061, 4062, 4063, 4064, 4065, 4066, 4067, 4068, 4069,
4070,4071, 4072, 4073, 4074, 4075, 4076, 4077, 4078, 4079,
4080, 4081, 4082, 4083, 4084, 4085, 4086, 4087, 4088, 4089,
4090, 4091, 4092, 4093, 4094, 4095, 4096, 4097, 4098, 4099,
4100,4101, 4102, 4103, 4104, 4105, 4106, 4107, 4108, 4109,
4110,4111,4112,4113,4114,4115,4116,4117,4118, 4119,
4120,4121,4122,4123,4124,4125,4126,4127,4128, 4129,
4130,4131,4132,4133, 4134, 4135,4136,4137, 4138, 4139,
4140,4141,4142,4143, 4144, 4145,4146,4147,4148, 4149,
4150,4151,4152,4153, 4154, 4155,4156,4157,4158, 4159,
4160,4161,4162,4163,4164,4165,4166,4167,4168, 4169,
4170,4171,4172,4173, 4174, 4175,4176,4177,4178, 4179,
4180,4181,4182,4183, 4184, 4185,4186,4187, 4188, 4189,
4190,4191,4192,4193, 4194, 4195,4196,4197, 4198, 4199,
4200,4201, 4202, 4203, 4204, 4205, 4206, 4207, 4208, 4209,
4210,4211,4212,4213, 4214, 4215,4216,4217,4218, 4219,
4220,4221, 4222, 4223, 4224, 4225, 4226, 4227, 4228, 4229,
4230,4231, 4232, 4233, 4234, 4235, 4236, 4237, 4238, 4239,
4240, 4241, 4242, 4243, 4244, 4245, 4246, 4247, 4248, 4249,
4250,4251, 4252, 4253, 4254, 4255, 4256, 4257, 4258, 4259,
4260,4261, 4262, 4263, 4264, 4265, 4266, 4267, 4268, 4269,
4270,4271, 4272, 4273, 4274, 4275, 4276, 4277, 4278, 4279,
4280,4281, 4282, 4283, 4284, 4285, 4286, 4287, 4288, 4289,
4290,4291, 4292, 4293, 4294, 4295, 4296, 4297, 4298, 4299,
4300, 4301, 4302, 4303, 4304, 4305, 4306, 4307, 4308, 4309,
4310,4311,4312,4313, 4314, 4315,4316,4317,4318, 4319,
4320,4321, 4322, 4323, 4324, 4325, 4326, 4327, 4328, 4329,
4330,4331, 4332, 4333, 4334, 4335, 4336, 4337, 4338, 4339,
4340,4341, 4342, 4343, 4344, 4345, 4346, 4347, 4348, 4349,
4350,4351, 4352, 4353, 4354, 4355, 4356, 4357, 4358, 4359,
4360, 4361, 4362, 4363, 4364, 4365, 4366, 4367, 4368, 4369,
4370,4371, 4372, 4373, 4374, 4375, 4376, 4377, 4378, 4379,
4380, 4381, 4382, 4383, 4384, 4385, 4386, 4387, 4388, 4389,
4390,4391, 4392, 4393, 4394, 4395, 4396, 4397, 4398, 4399,
4400, 4401, 4402, 4403, 4404, 4405, 4406, 4407, 4408, 4409,
4410,4411,4412,4413, 4414, 4415,4416,4417,4418, 4419,
4420,4421, 4422, 4423, 4424, 4425, 4426, 4427, 4428, 4429,
4430,4431, 4432, 4433, 4434, 4435, 4436, 4437, 4438, 4439,
4440, 4441, 4442, 4443, 4444, 4445, 4446, 4447, 4448, 4449,
4450,4451, 4452, 4453, 4454, 4455, 4456, 4457, 4458, 4459,
4460, 4461, 4462, 4463, 4464, 4465, 4466, 4467, 4468, 4469,
4470, 4471, 4472, 4473, 4474, 4475, 4476, 4477, 4478, 4479,
4480, 4481, 4482, 4483, 4484, 4485, 4486, 4487, 4488, 4489,
4490,4491, 4492, 4493, 4494, 4495, 4496, 4497, 4498, 4499,
4500, 4501, 4502, 4503, 4504, 4505, 4506, 4507, 4508, 4509,
4510,4511,4512,4513, 4514, 4515,4516,4517,4518, 4519,
4520,4521, 4522, 4523, 4524, 4525, 4526, 4527, 4528, 4529,
4530,4531, 4532, 4533, 4534, 4535, 4536, 4537, 4538, 4539,
4540,4541, 4542, 4543, 4544, 4545, 4546, 4547, 4548, 4549,
4550,4551, 4552, 4553, 4554, 4555, 4556, 4557, 4558, 4559,
4560,4561, 4562, 4563, 4564, 4565, 4566, 4567, 4568, 4569,
4570,4571,4572,4573, 4574, 4575, 4576,4577,4578, 4579,
4580,4581, 4582, 4583, 4584, 4585, 4586, 4587, 4588, 4589,
4590,4591, 4592, 4593, 4594, 4595, 4596, 4597, 4598, 4599,



US 9,050,297 B2

19
4600, 4601, 4602, 4603, 4604, 4605, 4606, 4607, 4608, 4609
4610,4611,4612,4613, 4614,4615,4616,4617,4618, 4619
4620, 4621, 4622, 4623, 4624, 4625, 4626, 4627, 4628, 4629,
4630, 4631, 4632, 4633, 4634, 4635, 4636, 4637, 4638, 4639,
4640, 4641, 4642, 4643, 4644, 4645, 4646, 4647, 4648, 4649,
4650, 4651, 4652, 4653, 4654, 4655, 4656, 4657, 4658, 4659,
4660, 4661, 4662, 4663, 4664, 4665, 4666, 4667, 4668, 4669,
4670, 4671, 4672, 4673, 4674, 4675, 4676, 4677, 4678, 4679,
4680, 4681, 4682, 4683, 4684, 4685, 4686, 4687, 4688, 4689,
4690, 4691, 4692, 4693, 4694, 4695, 4696, 4697, 4698, 4699,
4700, 4701, 4702, 4703, 4704, 4705, 4706, 4707, 4708, 4709
4710,4711,4712,4713,4714,4715,4716,4717,4718,4719
4720, 4721, 4722, 4723, 4724, 4725, 4726, 4727, 4728, 4729
4730, 4731, 4732, 4733, 4734, 4735, 4736, 4737, 4738, 4739
4740, 4741, 4742, 4743, 4744, 4745, 4746, 4747, 4748, 4749
4750, 4751, 4752, 4753, 4754, 4755, 4756, 4757, 4758, 4759,
4760, 4761, 4762, 4763, 4764, 4765, 4766, 4767, 4768, 4769,
4770, 4771, 4772, 4773, 4774, 4775, 4776, 4777, 4778, 4779
4780, 4781, 4782, 4783, 4784, 4785, 4786, 4787, 4788, 4789,
4790, 4791, 4792, 4793, 4794, 4795, 4796, 4797, 4798, 4799,
4800, 4801, 4802, 4803, 4804, 4805, 4806, 4807, 4808, 4809
4810,4811,4812,4813, 4814, 4815, 4816, 4817, 4818, 4819
4820,4821, 4822, 4823, 4824, 4825, 4826, 4827, 4828, 4829,
4830, 4831, 4832, 4833, 4834, 4835, 4836, 4837, 4838, 4839,
4840, 4841, 4842, 4843, 4844, 4845, 4846, 4847, 4848, 4849,
4850, 4851, 4852, 4853, 4854, 4855, 4856, 4857, 4858, 4859,
4860, 4861, 4862, 4863, 4864, 4865, 4866, 4867, 4868, 4869,
4870,4871, 4872, 4873, 4874, 4875, 4876, 4877, 4878, 4879,
4880, 4881, 4882, 4883, 4884, 4885, 4886, 4887, 4888, 4889,
4890, 4891, 4892, 4893, 4894, 4895, 4896, 4897, 4898, 4899,
4900, 4901, 4902, 4903, 4904, 4905, 4906, 4907, 4908, 4909
4910,4911,4912,4913, 4914,4915, 4916,4917, 4918, 4919
4920,4921, 4922, 4923, 4924, 4925, 4926, 4927, 4928, 4929,
4930,4931, 4932, 4933, 4934, 4935, 4936, 4937, 4938, 4939,
4940, 4941, 4942, 4943, 4944, 4945, 4946, 4947, 4948, 4949,
4950, 4951, 4952, 4953, 4954, 4955, 4956, 4957, 4958, 4959,
4960, 4961, 4962, 4963, 4964, 4965, 4966, 4967, 4968, 4969,
4970, 4971, 4972, 4973, 4974, 4975, 4976, 4977, 4978, 4979,
4980, 4981, 4982, 4983, 4984, 4985, 4986, 4987, 4988, 4989,
4990, 4991, 4992, 4993, 4994, 4995, 4996, 4997, 4998, 4999,
5000, 5001, 5002, 5003, 5004, 5005, 5006, 5007, 5008, 5009
5010, 5011, 5012, 5013, 5014, 5015, 5016, 5017, 5018, 5019
5020, 5021, 5022, 5023, 5024, 5025, 5026, 5027, 5028, 5029,
5030, 5031, 5032, 5033, 5034, 5035, 5036, 5037, 5038, 5039
5040, 5041, 5042, 5043, 5044, 5045, 5046, 5047, 5048, 5049,
5050, 5051, 5052, 5053, 5054, 5055, 5056, 5057, 5058, 5059,
5060, 5061, 5062, 5063, 5064, 5065, 5066, 5067, 5068, 5069,
5070, 5071, 5072, 5073, 5074, 5075, 5076, 5077, 5078, 5079,
5080, 5081, 5082, 5083, 5084, 5085, 5086, 5087, 5088, 5089,
5090, 5091, 5092, 5093, 5094, 5095, 5096, 5097, 5098, 5099,
5100, 5101, 5102, 5103, 5104, 5105, 5106, 5107, 5108, 5109
5110,5111,5112,5113,5114,5115,5116,5117,5118, 5119,
5120,5121,5122,5123,5124,5125,5126,5127,5128, 5129
5130, 5131, 5132, 5133, 5134, 5135, 5136, 5137, 5138, 5139
5140,5141,5142,5143, 5144, 5145, 5146, 5147,5148, 5149
5150,5151,5152,5153, 5154, 5155, 5156, 5157, 5158, 5159,
5160,5161,5162,5163,5164,5165,5166,5167,5168, 5169,
5170,5171,5172,5173,5174,5175,5176,5177,5178, 5179
5180,5181,5182,5183, 5184, 5185, 5186, 5187, 5188, 5189,
5190,5191,5192,5193,5194, 5195, 5196, 5197, 5198, 5199,
5200, 5201, 5202, 5203, 5204, 5205, 5206, 5207, 5208, 5209
5210,5211,5212,5213, 5214, 5215, 5216, 5217, 5218, 5219
5220, 5221, 5222, 5223, 5224, 5225, 5226, 5227, 5228, 5229,
5230, 5231, 5232, 5233, 5234, 5235, 5236, 5237, 5238, 5239
5240,5241, 5242, 5243, 5244, 5245, 5246, 5247, 5248, 5249,
5250, 5251, 5252, 5253, 5254, 5255, 5256, 5257, 5258, 5259,
5260, 5261, 5262, 5263, 5264, 5265, 5266, 5267, 5268, 5269,
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5270,5271,5272,5273, 5274, 5275, 5276, 5277, 5278, 5279
5280, 5281, 5282, 5283, 5284, 5285, 5286, 5287, 5288, 5289
5290, 5291, 5292, 5293, 5294, 5295, 5296, 5297, 5298, 5299
5300, 5301, 5302, 5303, 5304, 5305, 5306, 5307, 5308, 5309
5310,5311,5312, 5313, 5314, 5315, 5316, 5317, 5318, 5319,
5320, 5321, 5322, 5323, 5324, 5325, 5326, 5327, 5328, 5329
5330, 5331, 5332, 5333, 5334, 5335, 5336, 5337, 5338, 5339,
5340, 5341, 5342, 5343, 5344, 5345, 5346, 5347, 5348, 5349
5350, 5351, 5352, 5353, 5354, 5355, 5356, 5357, 5358, 5359,
5360, 5361, 5362, 5363, 5364, 5365, 5366, 5367, 5368, 5369,
5370, 5371, 5372, 5373, 5374, 5375, 5376, 5377, 5378, 5379
5380, 5381, 5382, 5383, 5384, 5385, 5386, 5387, 5388, 5389,
5390, 5391, 5392, 5393, 5394, 5395, 5396, 5397, 5398, 5399,
5400, 5401, 5402, 5403, 5404, 5405, 5406, 5407, 5408, 5409
5410,5411,5412,5413, 5414, 5415,5416, 5417, 5418, 5419
5420, 5421, 5422, 5423, 5424, 5425, 5426, 5427, 5428, 5429
5430, 5431, 5432, 5433, 5434, 5435, 5436, 5437, 5438, 5439
5440, 5441, 5442, 5443, 5444, 5445, 5446, 5447, 5448, 5449
5450, 5451, 5452, 5453, 5454, 5455, 5456, 5457, 5458, 5459,
5460, 5461, 5462, 5463, 5464, 5465, 5466, 5467, 5468, 5469
5470,5471, 5472, 5473, 5474, 5475, 5476, 5477, 5478, 5479
5480, 5481, 5482, 5483, 5484, 5485, 5486, 5487, 5488, 5489
5490, 5491, 5492, 5493, 5494, 5495, 5496, 5497, 5498, 5499
5500, 5501, 5502, 5503, 5504, 5505, 5506, 5507, 5508, 5509,
5510,5511,5512, 5513, 5514, 5515,5516, 5517, 5518, 5519
5520, 5521, 5522, 5523, 5524, 5525, 5526, 5527, 5528, 5529
5530, 5531, 5532, 5533, 5534, 5535, 5536, 5537, 5538, 5539
5540, 5541, 5542, 5543, 5544, 5545, 5546, 5547, 5548, 5549
5550, 5551, 5552, 5553, 5554, 5555, 5556, 5557, 5558, 5559,
5560, 5561, 5562, 5563, 5564, 5565, 5566, 5567, 5568, 5569,
5570,5571,5572,5573, 5574, 5575, 5576, 5577, 5578, 5579
5580, 5581, 5582, 5583, 5584, 5585, 5586, 5587, 5588, 5589,
5590, 5591, 5592, 5593, 5594, 5595, 5596, 5597, 5598, 5599,
5600, 5601, 5602, 5603, 5604, 5605, 5606, 5607, 5608, 5609
5610,5611,5612, 5613, 5614, 5615, 5616, 5617, 5618, 5619
5620, 5621, 5622, 5623, 5624, 5625, 5626, 5627, 5628, 5629
5630, 5631, 5632, 5633, 5634, 5635, 5636, 5637, 5638, 5639
5640, 5641, 5642, 5643, 5644, 5645, 5646, 5647, 5648, 5649
5650, 5651, 5652, 5653, 5654, 5655, 5656, 5657, 5658, 5659,
5660, 5661, 5662, 5663, 5664, 5665, 5666, 5667, 5668, 5669,
5670, 5671, 5672, 5673, 5674, 5675, 5676, 5677, 5678, 5679
5680, 5681, 5682, 5683, 5684, 5685, 5686, 5687, 5688, 5689,
5690, 5691, 5692, 5693, 5694, 5695, 5696, 5697, 5698, 5699,
5700, 5701, 5702, 5703, 5704, 5705, 5706, 5707, 5708, 5709
5710,5711,5712,5713, 5714, 5715,5716, 5717,5718, 5719
5720,5721,5722,5723, 5724, 5725,5726, 5727,5728, 5729
5730,5731, 5732, 5733, 5734, 5735, 5736, 5737, 5738, 5739
5740,5741,5742, 5743, 5744, 5745, 5746, 5747, 5748, 5749
5750,5751,5752, 5753, 5754, 5755, 5756, 5757, 5758, 5759,
5760, 5761, 5762, 5763, 5764, 5765, 5766, 5767, 5768, 5769
5770,5771,5772,5773, 5774, 5775,5776, 5777,5778, 5779
5780, 5781, 5782, 5783, 5784, 5785, 5786, 5787, 5788, 5789
5790, 5791, 5792, 5793, 5794, 5795, 5796, 5797, 5798, 5799
5800, 5801, 5802, 5803, 5804, 5805, 5806, 5807, 5808, 5809
5810, 5811, 5812, 5813, 5814, 5815, 5816, 5817, 5818, 5819
5820, 5821, 5822, 5823, 5824, 5825, 5826, 5827, 5828, 5829
5830, 5831, 5832, 5833, 5834, 5835, 5836, 5837, 5838, 5839
5840, 5841, 5842, 5843, 5844, 5845, 5846, 5847, 5848, 5849
5850, 5851, 5852, 5853, 5854, 5855, 5856, 5857, 5858, 5859,
5860, 5861, 5862, 5863, 5864, 5865, 5866, 5867, 5868, 5869,
5870, 5871, 5872, 5873, 5874, 5875, 5876, 5877, 5878, 5879
5880, 5881, 5882, 5883, 5884, 5885, 5886, 5887, 5888, 5889,
5890, 5891, 5892, 5893, 5894, 5895, 5896, 5897, 5898, 5899,
5900, 5901, 5902, 5903, 5904, 5905, 5906, 5907, 5908, 5909
5910,5911,5912, 5913, 5914, 5915, 5916, 5917, 5918, 5919
5920, 5921, 5922, 5923, 5924, 5925, 5926, 5927, 5928, 5929
5930, 5931, 5932, 5933, 5934, 5935, 5936, 5937, 5938, 5939
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5940, 5941, 5942, 5943, 5944, 5945, 5946, 5947, 5948, 5949,
5950, 5951, 5952, 5953, 5954, 5955, 5956, 5957, 5958, 5959,
5960, 5961, 5962, 5963, 5964, 5965, 5966, 5967, 5968, 5969,
5970,5971, 5972, 5973, 5974, 5975, 5976, 5977, 5978, 5979,
5980, 5981, 5982, 5983, 5984, 5985, 5986, 5987, 5988, 5989,
5990, 5991, 5992, 5993, 5994, 5995, 5996, 5997, 5998, 5999,
6000, 6001, 6002, 6003, 6004, 6005, 6006, 6007, 6008, 6009
6010, 6011, 6012, 6013, 6014, 6015, 6016, 6017, 6018, 6019
6020, 6021, 6022, 6023, 6024, 6025, 6026, 6027, 6028, 6029
6030, 6031, 6032, 6033, 6034, 6035, 6036, 6037, 6038, 6039
6040, 6041, 6042, 6043, 6044, 6045, 6046, 6047, 6048, 6049
6050, 6051, 6052, 6053, 6054, 6055, 6056, 6057, 6058, 6059,
6060, 6061, 6062, 6063, 6064, 6065, 6066, 6067, 6068, 6069,
6070, 6071, 6072, 6073, 6074, 6075, 6076, 6077, 6078, 6079
6080, 6081, 6082, 6083, 6084, 6085, 6086, 6087, 6088, 6089,
6090, 6091, 6092, 6093, 6094, 6095, 6096, 6097, 6098, 6099,
6100, 6101, 6102, 6103, 6104, 6105, 6106, 6107, 6108, 6109
6110,6111,6112,6113,6114,6115,6116,6117,6118, 6119,
6120, 6121, 6122,6123,6124,6125, 6126, 6127,6128, 6129
6130, 6131, 6132, 6133, 6134, 6135, 6136, 6137, 6138, 6139
6140, 6141, 6142, 6143, 6144, 6145, 6146, 6147,6148, 6149
6150, 6151, 6152,6153, 6154, 6155, 6156, 6157, 6158, 6159,
6160, 6161,6162,6163,6164,6165, 6166, 6167,6168, 6169,
6170,6171,6172,6173,6174,6175, 6176, 6177,6178, 6179
6180, 6181, 6182, 6183, 6184, 6185, 6186, 6187, 6188, 6189,
6190, 6191, 6192, 6193, 6194, 6195, 6196, 6197, 6198, 6199,
6200, 6201, 6202, 6203, 6204, 6205, 6206, 6207, 6208, 6209
6210, 6211, 6212, 6213, 6214, 6215, 6216, 6217, 6218, 6219
6220, 6221, 6222, 6223, 6224, 6225, 6226, 6227, 6228, 6229
6230, 6231, 6232, 6233, 6234, 6235, 6236, 6237, 6238, 6239
6240, 6241, 6242, 6243, 6244, 6245, 6246, 6247, 6248, 6249
6250, 6251, 6252, 6253, 6254, 6255, 6256, 6257, 6258, 6259,
6260, 6261, 6262, 6263, 6264, 6265, 6266, 6267, 6268, 6269,
6270, 6271, 6272, 6273, 6274, 6275, 6276, 6277, 6278, 6279
6280, 6281, 6282, 6283, 6284, 6285, 6286, 6287, 6288, 6289,
6290, 6291, 6292, 6293, 6294, 6295, 6296, 6297, 6298, 6299,
6300, 6301, 6302, 6303, 6304, 6305, 6306, 6307, 6308, 6309
6310, 6311, 6312, 6313, 6314, 6315, 6316, 6317, 6318, 6319,
6320, 6321, 6322, 6323, 6324, 6325, 6326, 6327, 6328, 6329
6330, 6331, 6332, 6333, 6334, 6335, 6336, 6337, 6338, 6339,
6340, 6341, 6342, 6343, 6344, 6345, 6346, 6347, 6348, 6349
6350, 6351, 6352, 6353, 6354, 6355, 6356, 6357, 6358, 6359,
6360, 6361, 6362, 6363, 6364, 6365, 6366, 6367, 6368, 6369,
6370, 6371, 6372, 6373, 6374, 6375, 6376, 6377, 6378, 6379
6380, 6381, 6382, 6383, 6384, 6385, 6386, 6387, 6388, 6389,
6390, 6391, 6392, 6393, 6394, 6395, 6396, 6397, 6398, 6399,
6400, 6401, 6402, 6403, 6404, 6405, 6406, 6407, 6408, 6409
6410, 6411, 6412, 6413, 6414, 6415, 6416, 6417, 6418, 6419
6420, 6421, 6422, 6423, 6424, 6425, 6426, 6427, 6428, 6429
6430, 6431, 6432, 6433, 6434, 6435, 6436, 6437, 6438, 6439
6440, 6441, 6442, 6443, 6444, 6445, 6446, 6447, 6448, 6449
6450, 6451, 6452, 6453, 6454, 6455, 6456, 6457, 6458, 6459,
6460, 6461, 6462, 6463, 6464, 6465, 6466, 6467, 6468, 6469,
6470, 6471, 6472, 6473, 6474, 6475, 6476, 6477, 6478, 6479
6480, 6481, 6482, 6483, 6484, 6485, 6486, 6487, 6488, 6489,
6490, 6491, 6492, 6493, 6494, 6495, 6496, 6497, 6498, 6499,
6500, 6501, 6502, 6503, 6504, 6505, 6506, 6507, 6508, 6509,
6510, 6511, 6512, 6513, 6514, 6515, 6516, 6517, 6518, 6519
6520, 6521, 6522, 6523, 6524, 6525, 6526, 6527, 6528, 6529,
6530, 6531, 6532, 6533, 6534, 6535, 6536, 6537, 6538, 6539,
6540, 6541, 6542, 6543, 6544, 6545, 6546, 6547, 6548, 6549,
6550, 6551, 6552, 6553, 6554, 6555, 6556, 6557, 6558, 6559,
6560, 6561, 6562, 6563, 6564, 6565, 6566, 6567, 6568, 6569,
6570, 6571, 6572, 6573, 6574, 6575, 6576, 6577, 6578, 6579,
6580, 6581, 6582, 6583, 6584, 6585, 6586, 6587, 6588, 6589,
6590, 6591, 6592, 6593, 6594, 6595, 6596, 6597, 6598, 6599,
6600, 6601, 6602, 6603, 6604, 6605, 6606, 6607, 6608, 6609,
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6610, 6611, 6612, 6613, 6614, 6615, 6616, 6617, 6618, 6619
6620, 6621, 6622, 6623, 6624, 6625, 6626, 6627, 6628, 6629
6630, 6631, 6632, 6633, 6634, 6635, 6636, 6637, 6638, 6639
6640, 6641, 6642, 6643, 6644, 6645, 6646, 6647, 6648, 6649
6650, 6651, 6652, 6653, 6654, 6655, 6656, 6657, 6658, 6659,
6660, 6661, 6662, 6663, 6664, 6665, 6666, 6667, 6668, 6669,
6670, 6671, 6672, 6673, 6674, 6675, 6676, 6677, 6678, 6679
6680, 6681, 6682, 6683, 6684, 6685, 6686, 6687, 6688, 6689,
6690, 6691, 6692, 6693, 6694, 6695, 6696, 6697, 6698, 6699,
6700, 6701, 6702, 6703, 6704, 6705, 6706, 6707, 6708, 6709
6710,6711, 6712, 6713, 6714, 6715,6716, 6717, 6718, 6719,
6720, 6721, 6722, 6723, 6724, 6725, 6726, 6727, 6728, 6729
6730, 6731, 6732, 6733, 6734, 6735, 6736, 6737, 6738, 6739
6740, 6741, 6742, 6743, 6744, 6745, 6746, 6747, 6748, 6749
6750, 6751, 6752, 6753, 6754, 6755, 6756, 6757, 6758, 6759,
6760, 6761, 6762, 6763, 6764, 6765, 6766, 6767, 6768, 6769
6770,6771, 6772, 6773, 6774, 6775,6776, 6777,6778, 6779
6780, 6781, 6782, 6783, 6784, 6785, 6786, 6787, 6788, 6789
6790, 6791, 6792, 6793, 6794, 6795, 6796, 6797, 6798, 6799
6800, 6801, 6802, 6803, 6304, 6805, 6806, 6807, 6308, 6809
6810, 6811, 6812, 6813, 6314, 6815, 6816, 6817, 6318, 6819
6820, 6821, 6822, 6823, 6324, 6825, 6826, 6827, 6328, 6829
6830, 6831, 6832, 6833, 6334, 6835, 6836, 6837, 6338, 6839
6840, 6841, 6842, 6843, 6344, 6845, 6846, 6847, 6348, 6849
6850, 6851, 6852, 6853, 6854, 6855, 6856, 6857, 6858, 6859,
6860, 6861, 6862, 6863, 6364, 6865, 6866, 6867, 6368, 6869,
6870, 6871, 6872, 6873, 6874, 6875, 6876, 6877, 6878, 6879
6880, 6881, 6882, 6883, 6384, 6885, 6886, 6887, 6388, 6889,
6890, 6891, 6892, 6893, 6394, 6895, 6896, 6897, 6898, 6899,
6900, 6901, 6902, 6903, 6904, 6905, 6906, 6907, 6908, 6909
6910, 6911, 6912, 6913, 6914, 6915, 6916, 6917, 6918, 6919
6920, 6921, 6922, 6923, 6924, 6925, 6926, 6927, 6928, 6929
6930, 6931, 6932, 6933, 6934, 6935, 6936, 6937, 6938, 6939
6940, 6941, 6942, 6943, 6944, 6945, 6946, 6947, 6948, 6949
6950, 6951, 6952, 6953, 6954, 6955, 6956, 6957, 6958, 6959,
6960, 6961, 6962, 6963, 6964, 6965, 6966, 6967, 6968, 6969,
6970, 6971, 6972, 6973, 6974, 6975, 6976, 6977, 6978, 6979
6980, 6981, 6982, 6983, 6984, 6985, 6986, 6987, 6988, 6989,
6990, 6991, 6992, 6993, 6994, 6995, 6996, 6997, 6998, 6999,
7000, 7001, 7002, 7003, 7004, 7005, 7006, 7007, 7008, 7009
7010,7011, 7012, 7013, 7014, 7015, 7016, 7017, 7018, 7019,
7020,7021, 7022, 7023, 7024, 7025, 7026, 7027, 7028, 7029
7030,7031, 7032, 7033, 7034, 7035, 7036, 7037, 7038, 7039
7040, 7041, 7042, 7043, 7044, 7045, 7046, 7047, 7048, 7049
7050,7051, 7052, 7053, 7054, 7055, 7056, 7057, 7058, 7059,
7060, 7061, 7062, 7063, 7064, 7065, 7066, 7067, 7068, 7069,
7070,7071, 7072, 7073, 7074, 7075, 7076, 7077, 7078, 7079
7080, 7081, 7082, 7083, 7084, 7085, 7086, 7087, 7088, 7089,
7090, 7091, 7092, 7093, 7094, 7095, 7096, 7097, 7098, 7099,
7100,7101, 7102, 7103, 7104, 7105, 7106, 7107, 7108, 7109
7110,7111,7112,7113,7114,7115,7116,7117,7118, 7119,
7120,7121,7122,7123,7124,7125,7126,7127,7128, 7129
7130,7131, 7132, 7133, 7134, 7135, 7136, 7137,7138, 7139
7140,7141,7142,7143, 7144, 7145,7146,7147,7148, 7149
7150,7151,7152,7153, 7154, 7155,7156,7157,7158, 7159
7160,7161,7162,7163,7164,7165,7166,7167,7168, 7169
7170,7171,7172,7173, 7174, 7175,7176,7177,7178, 7179
7180,7181,7182,7183, 7184, 7185,7186, 7187, 7188, 7189
7190,7191,7192,7193, 7194, 7195,7196,7197,7198, 7199
7200,7201, 7202, 7203, 7204, 7205, 7206, 7207, 7208, 7209
7210,7211,7212,7213,7214,7215,7216,7217,7218, 7219,
7220,7221,7222,7223,7224,7225,7226,7227,7228, 7229
7230,7231,7232,7233, 7234, 7235, 7236, 7237,7238, 7239
7240,7241,7242, 7243, 7244, 7245, 7246, 7247, 7248, 7249
7250,7251,7252,7253, 7254, 7255, 7256, 7257, 7258, 7259,
7260,7261,7262,7263, 7264, 7265, 7266, 7267, 7268, 7269
7270,7271,7272,7273,7274,7275,7276,7277,7278, 7279
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7280,7281,7282,7283,7284,7285,7286,7287,7288, 7289,
7290,7291,7292,7293,7294,7295,7296,7297,7298,7299,
7300, 7301, 7302,7303, 7304, 7305, 7306, 7307, 7308, 7309,
7310,7311,7312,7313,7314,7315,7316,7317,7318,7319,
7320,7321,7322,7323,7324,7325,7326,7327,7328,7329,
7330,7331,7332,7333,7334,7335,7336,7337,7338, 7339,
7340,7341,7342,7343,7344,7345,7346,7347,7348,7349,
7350,7351,7352,7353,7354,7355,7356,7357,7358, 7359,
7360,7361,7362,7363,7364,7365,7366,7367,7368,7369,
7370,7371,7372,7373,7374,7375,7376,7377,7378,7379,
7380,7381,7382,7383,7384,7385, 7386, 7387, 7388, 7389,
7390,7391,7392,7393,7394,7395, 7396, 7397,7398, 7399,
7400,7401,7402,7403, 7404, 7405, 7406, 7407, 7408, 7409,
7410,7411,7412,7413,7414,7415,7416,7417,7418,7419,
7420,7421,7422,7423,7424,7425,7426,7427,7428,7429,
7430,7431,7432,7433,7434,7435,7436,7437,7438,7439,
7440,7441,7442,7443,7444,7445,7446,7447,7448,7449,
7450,7451,7452,7453,7454,7455,7456,7457,7458, 7459,
7460,7461,7462,7463,7464,7465,7466,7467,7468,7469,
7470,7471,7472,7473,7474,7475,7476,7477,7478,7479,
7480,7481,7482,7483,7484,7485,7486,7487,7488,7489,
7490,7491,7492,7493,7494,7495,7496,7497,7498, 7499,
7500,7501,7502,7503, 7504,7505, 7506, 7507, 7508, 7509,
7510,7511,7512,7513,7514,7515,7516,7517,7518,7519,
7520,7521,7522,7523,7524,7525,7526,7527,7528,7529,
7530,7531,7532,7533,7534,7535,7536,7537,7538,7539,
7540,7541,7542,7543,7544,7545,7546,7547,7548, 7549,
7550,7551,7552,7553,7554,7555,7556,7557,7558,7559.

The term “identity” as known in the art, refers to a rela-
tionship between the sequences of two or more peptides, as
determined by comparing the sequences. In the art, identity
also means the degree of sequence relatedness between pep-
tides, as determined by the number of matches between
strings of two or more amino acid residues. Identity measures
the percent of identical matches between the smaller of two or
more sequences with gap alignments (if any) addressed by a
particular mathematical model or computer program (i.e.,
“algorithms™). Identity of related peptides can be readily cal-
culated by known methods. Such methods include, but are not
limited to, those described in Computational Molecular Biol-
ogy, Lesk, A. M., ed., Oxford University Press, New York,
1988; Biocomputing: Informatics and Genome Projects,
Smith, D. W., ed., Academic Press, New York, 1993; Com-
puter Analysis of Sequence Data, Part 1, Griffin, A. M., and
Griffin, H. G., eds., Humana Press, New Jersey, 1994;
Sequence Analysis in Molecular Biology, von Heinje, G.,
Academic Press, 1987; Sequence Analysis Primer, Gribskov,
M. and Devereux, J., eds., M. Stockton Press, New York,
1991; and Carillo et al., SIAM J. Applied Math. 48, 1073
(1988).

In some embodiments, the polypeptide variant may have
the same or a similar activity as the reference polypeptide.
Alternatively, the variant may have an altered activity (e.g.,
increased or decreased) relative to a reference polypeptide.
Generally, variants of a particular polynucleotide or polypep-
tide of the invention will have at least about 40%, 45%, 50%,
55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%,
93%, 94%, 95%, 96%, 97%, 98%, 99% but less than 100%
sequence identity to that particular reference polynucleotide
or polypeptide as determined by sequence alignment pro-
grams and parameters described herein and known to those
skilled in the art. Such tools for alignment include those of the
BLAST suite (Stephen F. Altschul, Thomas [.. Madden, Ale-
jandro A. Schéiffer, Jinghui Zhang, Zheng Zhang, Webb
Miller, and David J. Lipman (1997), “Gapped BLAST and
PSI-BLAST: a new generation of protein database search
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programs”, Nucleic Acids Res. 25:3389-3402.) Other tools
are described herein, specifically in the definition of “Iden-
tity.”

Default parameters in the BLAST algorithm include, for
example, an expect threshold of 10, Word size of 28, Match/
Mismatch Scores 1, -2, Gap costs Linear. Any filter can be
applied as well as a selection for species specific repeats, e.g.,
Homo sapiens.

Biologics

The polynucleotides, primary constructs or mmRNA dis-
closed herein, may encode one or more biologics. As used
herein, a “biologic” is a polypeptide-based molecule pro-
duced by the methods provided herein and which may be used
to treat, cure, mitigate, prevent, or diagnose a serious or
life-threatening disease or medical condition. Biologics,
according to the present invention include, but are not limited
to, allergenic extracts (e.g. for allergy shots and tests), blood
components, gene therapy products, human tissue or cellular
products used in transplantation, vaccines, monoclonal anti-
bodies, cytokines, growth factors, enzymes, thrombolytics,
and immunomodulators, among others.

According to the present invention, one or more biologics
currently being marketed or in development may be encoded
by the polynucleotides, primary constructs or mmRNA of'the
present invention. While not wishing to be bound by theory, it
is believed that incorporation of the encoding polynucle-
otides of a known biologic into the primary constructs or
mmRNA of the invention will result in improved therapeutic
efficacy due at least in part to the specificity, purity and/or
selectivity of the construct designs.

Antibodies

The primary constructs or mmRNA disclosed herein, may
encode one or more antibodies or fragments thereof. The term
“antibody” includes monoclonal antibodies (including full
length antibodies which have an immunoglobulin Fc region),
antibody compositions with polyepitopic specificity, multi-
specific antibodies (e.g., bispecific antibodies, diabodies, and
single-chain molecules), as well as antibody fragments. The
term “immunoglobulin” (Ig) is used interchangeably with
“antibody” herein. As used herein, the term “monoclonal
antibody” refers to an antibody obtained from a population of
substantially homogeneous antibodies, i.e., the individual
antibodies comprising the population are identical except for
possible naturally occurring mutations and/or post-transla-
tion modifications (e.g., isomerizations, amidations) that may
be present in minor amounts. Monoclonal antibodies are
highly specific, being directed against a single antigenic site.

The monoclonal antibodies herein specifically include
“chimeric” antibodies (immunoglobulins) in which a portion
of the heavy and/or light chain is identical with or homolo-
gous to corresponding sequences in antibodies derived from a
particular species or belonging to a particular antibody class
or subclass, while the remainder of the chain(s) is(are) iden-
tical with or homologous to corresponding sequences in anti-
bodies derived from another species or belonging to another
antibody class or subclass, as well as fragments of such anti-
bodies, so long as they exhibit the desired biological activity.
Chimeric antibodies of interest herein include, but are not
limited to, “primatized” antibodies comprising variable
domain antigen-binding sequences derived from a non-hu-
man primate (e.g., Old World Monkey, Ape etc.) and human
constant region sequences.

An “antibody fragment” comprises a portion of an intact
antibody, preferably the antigen binding and/or the variable
region of the intact antibody. Examples of antibody fragments
include Fab, Fab', F(ab'), and Fv fragments; diabodies; linear
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antibodies; nanobodies; single-chain antibody molecules and
multispecific antibodies formed from antibody fragments.

Any of the five classes of immunoglobulins, IgA, IgD, IgE,
IgG and IgM, may be encoded by the mmRNA of the inven-
tion, including the heavy chains designated alpha, delta, epsi-
lon, gamma and mu, respectively. Also included are poly-
nucleotide sequences encoding the subclasses, gamma and
mu. Hence any of the subclasses of antibodies may be
encoded in part or in whole and include the following sub-
classes: IgG1, IgG2, 1gG3, IgG4, IgAl and IgA2.

According to the present invention, one or more antibodies
or fragments currently being marketed or in development
may be encoded by the polynucleotides, primary constructs
or mmRNA of'the present invention. While not wishing to be
bound by theory, it is believed that incorporation into the
primary constructs of the invention will result in improved
therapeutic efficacy due at least in part to the specificity,
purity and selectivity of the mmRNA designs.

Antibodies encoded in the polynucleotides, primary con-
structs or mmRNA of the invention may be utilized to treat
conditions or diseases in many therapeutic areas such as, but
not limited to, blood, cardiovascular, CNS, poisoning (in-
cluding antivenoms), dermatology, endocrinology, gas-
trointestinal, medical imaging, musculoskeletal, oncology,
immunology, respiratory, sensory and anti-infective.

In one embodiment, primary constructs or mmRNA dis-
closed herein may encode monoclonal antibodies and/or vari-
ants thereof. Variants of antibodies may also include, but are
not limited to, substitutional variants, conservative amino
acid substitution, insertional variants, deletional variants and/
or covalent derivatives. In one embodiment, the primary con-
struct and/or mmRNA disclosed herein may encode an immu-
noglobulin Fc region. In another embodiment, the primary
constructs and/or mmRNA may encode a variant immuno-
globulin Fc region. As a non-limiting example, the primary
constructs and/or mmRNA may encode an antibody having a
variant immunoglobulin Fc region as described in U.S. Pat.
No. 8,217,147 herein incorporated by reference in its entirety.
Vaccines

The primary constructs or mmRNA disclosed herein, may
encode one or more vaccines. As used herein, a “vaccine” is a
biological preparation that improves immunity to a particular
disease or infectious agent. According to the present inven-
tion, one or more vaccines currently being marketed or in
development may be encoded by the polynucleotides, pri-
mary constructs or mmRNA of the present invention. While
not wishing to be bound by theory, it is believed that incor-
poration into the primary constructs or mmRNA of the inven-
tion will result in improved therapeutic efficacy due at least in
part to the specificity, purity and selectivity of the construct
designs.

Vaccines encoded in the polynucleotides, primary con-
structs or mmRNA of the invention may be utilized to treat
conditions or diseases in many therapeutic areas such as, but
not limited to, cardiovascular, CNS, dermatology, endocri-
nology, oncology, immunology, respiratory, and anti-infec-
tive.

Therapeutic Proteins or Peptides

The primary constructs or mmRNA disclosed herein, may
encode one or more validated or “in testing” therapeutic
proteins or peptides.

According to the present invention, one or more therapeu-
tic proteins or peptides currently being marketed or in devel-
opment may be encoded by the polynucleotides, primary
constructs or mmRNA of the present invention. While not
wishing to be bound by theory, it is believed that incorpora-
tion into the primary constructs or mmRNA of the invention
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will result in improved therapeutic efficacy due at least in part
to the specificity, purity and selectivity of the construct
designs.

Therapeutic proteins and peptides encoded in the poly-
nucleotides, primary constructs or mmRNA of the invention
may be utilized to treat conditions or diseases in many thera-
peutic areas such as, but not limited to, blood, cardiovascular,
CNS, poisoning (including antivenoms), dermatology, endo-
crinology, genetic, genitourinary, gastrointestinal, muscu-
loskeletal, oncology, and immunology, respiratory, sensory
and anti-infective.

Cell-Penetrating Polypeptides

The primary constructs or mmRNA disclosed herein, may
encode one or more cell-penetrating polypeptides. As used
herein, “cell-penetrating polypeptide” or CPP refers to a
polypeptide which may facilitate the cellular uptake of mol-
ecules. A cell-penetrating polypeptide of the present inven-
tion may contain one or more detectable labels. The polypep-
tides may be partially labeled or completely labeled
throughout. The polynucleotide, primary construct or
mmRNA may encode the detectable label completely, par-
tially or not at all. The cell-penetrating peptide may also
include a signal sequence. As used herein, a “signal
sequence” refers to a sequence of amino acid residues bound
at the amino terminus of a nascent protein during protein
translation. The signal sequence may be used to signal the
secretion of the cell-penetrating polypeptide.

In one embodiment, the polynucleotides, primary con-
structs or mmRNA may also encode a fusion protein. The
fusion protein may be created by operably linking a charged
protein to a therapeutic protein. As used herein, “operably
linked” refers to the therapeutic protein and the charged pro-
tein being connected in such a way to permit the expression of
the complex when introduced into the cell. As used herein,
“charged protein” refers to a protein that carries a positive,
negative or overall neutral electrical charge. Preferably, the
therapeutic protein may be covalently linked to the charged
protein in the formation of the fusion protein. The ratio of
surface charge to total or surface amino acids may be approxi-
mately 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 or 0.9.

The cell-penetrating polypeptide encoded by the poly-
nucleotides, primary constructs or mmRNA may form a com-
plex after being translated. The complex may comprise a
charged protein linked, e.g. covalently linked, to the cell-
penetrating polypeptide. “Therapeutic protein” refers to a
protein that, when administered to a cell has a therapeutic,
diagnostic, and/or prophylactic effect and/or elicits a desired
biological and/or pharmacological effect.

In one embodiment, the cell-penetrating polypeptide may
comprise a first domain and a second domain. The first
domain may comprise a supercharged polypeptide. The sec-
ond domain may comprise a protein-binding partner. As used
herein, “protein-binding partner” includes, but is not limited
to, antibodies and functional fragments thereof, scaffold pro-
teins, or peptides. The cell-penetrating polypeptide may fur-
ther comprise an intracellular binding partner for the protein-
binding partner. The cell-penetrating polypeptide may be
capable of being secreted from a cell where the polynucle-
otide, primary construct or mmRNA may be introduced. The
cell-penetrating polypeptide may also be capable of penetrat-
ing the first cell.

In a further embodiment, the cell-penetrating polypeptide
is capable of penetrating a second cell. The second cell may
be from the same area as the first cell, or it may be from a
different area. The area may include, but is not limited to,
tissues and organs. The second cell may also be proximal or
distal to the first cell.
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In one embodiment, the polynucleotides, primary con-
structs or mmRNA may encode a cell-penetrating polypep-
tide which may comprise a protein-binding partner. The pro-
tein binding partner may include, but is not limited to, an
antibody, a supercharged antibody or a functional fragment.
The polynucleotides, primary constructs or mmRNA may be
introduced into the cell where a cell-penetrating polypeptide
comprising the protein-binding partner is introduced.
Secreted Proteins

Human and other eukaryotic cells are subdivided by mem-
branes into many functionally distinct compartments. Each
membrane-bounded compartment, or organelle, contains dif-
ferent proteins essential for the function of the organelle. The
cell uses “sorting signals,” which are amino acid motifs
located within the protein, to target proteins to particular
cellular organelles.

One type of sorting signal, called a signal sequence, a
signal peptide, or a leader sequence, directs a class of proteins
to an organelle called the endoplasmic reticulum (ER).

Proteins targeted to the ER by a signal sequence can be
released into the extracellular space as a secreted protein.
Similarly, proteins residing on the cell membrane can also be
secreted into the extracellular space by proteolytic cleavage
of'a “linker” holding the protein to the membrane. While not
wishing to be bound by theory, the molecules of the present
invention may be used to exploit the cellular trafficking
described above. As such, in some embodiments of the inven-
tion, polynucleotides, primary constructs or mmRNA are
provided to express a secreted protein. The secreted proteins
may be selected from those described herein or those in US
Patent Publication, 20100255574, the contents of which are
incorporated herein by reference in their entirety.

In one embodiment, these may be used in the manufacture
of large quantities of valuable human gene products.
Plasma Membrane Proteins

In some embodiments of the invention, polynucleotides,
primary constructs or mmRNA are provided to express a
protein of the plasma membrane.

Cytoplasmic or Cytoskeletal Proteins

In some embodiments of the invention, polynucleotides,
primary constructs or mmRNA are provided to express a
cytoplasmic or cytoskeletal protein.

Intracellular Membrane Bound Proteins

In some embodiments of the invention, polynucleotides,
primary constructs or mmRNA are provided to express an
intracellular membrane bound protein.

Nuclear Proteins

In some embodiments of the invention, polynucleotides,
primary constructs or mmRNA are provided to express a
nuclear protein.

Proteins Associated with Human Disease

In some embodiments of the invention, polynucleotides,
primary constructs or mmRNA are provided to express a
protein associated with human disease.

Miscellaneous Proteins

In some embodiments of the invention, polynucleotides,
primary constructs or mmRNA are provided to express a
protein with a presently unknown therapeutic function.
Targeting Moieties

In some embodiments of the invention, polynucleotides,
primary constructs or mmRNA are provided to express a
targeting moiety. These include a protein-binding partner or a
receptor on the surface of the cell, which functions to target
the cell to a specific tissue space or to interact with a specific
moiety, either in vivo or in vitro. Suitable protein-binding
partners include, but are not limited to, antibodies and func-
tional fragments thereof, scaffold proteins, or peptides. Addi-
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tionally, polynucleotide, primary construct or mmRNA can
be employed to direct the synthesis and extracellular local-
ization of lipids, carbohydrates, or other biological moieties
or biomolecules.

Polypeptide Libraries

In one embodiment, the polynucleotides, primary con-
structs or mmRNA may be used to produce polypeptide
libraries. These libraries may arise from the production of a
population of polynucleotides, primary constructs or
mmRNA, each containing various structural or chemical
modification designs. In this embodiment, a population of
polynucleotides, primary constructs or mmRNA may com-
prise a plurality of encoded polypeptides, including but not
limited to, an antibody or antibody fragment, protein binding
partner, scaffold protein, and other polypeptides taught herein
or known in the art. In a preferred embodiment, the poly-
nucleotides are primary constructs of the present invention,
including mmRNA which may be suitable for direct intro-
duction into a target cell or culture which in turn may synthe-
size the encoded polypeptides.

In certain embodiments, multiple variants of a protein,
each with different amino acid modification(s), may be pro-
duced and tested to determine the best variant in terms of
pharmacokinetics, stability, biocompatibility, and/or biologi-
cal activity, or a biophysical property such as expression
level. Such a library may contain 10, 10%, 10°, 10%, 10°, 109,
107,10%,10°, or over 10° possible variants (including, but not
limited to, substitutions, deletions of one or more residues,
and insertion of one or more residues).

Anti-Microbial and Anti-Viral Polypeptides

The polynucleotides, primary constructs and mmRNA of
the present invention may be designed to encode on or more
antimicrobial peptides (AMP) or antiviral peptides (AVP).
AMPs and AVPs have been isolated and described from a
wide range of animals such as, but not limited to, microor-
ganisms, invertebrates, plants, amphibians, birds, fish, and
mammals (Wang et al., Nucleic Acids Res. 2009; 37 (Data-
base issue):933-7). For example, anti-microbial polypep-
tides are described in Antimicrobial Peptide Database (ap-
s.unmc.edw/AP/main.php; Wang et al., Nucleic Acids Res.
2009; 37 (Database issue):12933-7), CAMP: Collection of
Anti-Microbial Peptides (www.bicnirrh.res.in/antimicro-
bial/); Thomas et al., Nucleic Acids Res. 2010; 38 (Database
issue):D774-80), U.S. Pat. No. 5,221,732, U.S. Pat. No.
5,447,914, U.S. Pat. No. 5,519,115, U.S. Pat. No. 5,607,914,
U.S. Pat. No. 5,714,577, U.S. Pat. No. 5,734,015, U.S. Pat.
No. 5,798,336, U.S. Pat. No. 5,821,224, U.S. Pat. No. 5,849,
490, U.S. Pat. No. 5,856,127, U.S. Pat. No. 5,905,187, U.S.
Pat. No. 5,994,308, U.S. Pat. No. 5,998,374, U.S. Pat. No.
6,107,460, U.S. Pat. No. 6,191,254, U.S. Pat. No. 6,211,148,
U.S. Pat. No. 6,300,489, U.S. Pat. No. 6,329,504, U.S. Pat.
No. 6,399,370, U.S. Pat. No. 6,476,189, U.S. Pat. No. 6,478,
825, U.S. Pat. No. 6,492,328, U.S. Pat. No. 6,514,701, U.S.
Pat. No. 6,573,361, U.S. Pat. No. 6,573,361, U.S. Pat. No.
6,576,755, U.S. Pat. No. 6,605,698, U.S. Pat. No. 6,624,140,
U.S. Pat. No. 6,638,531, U.S. Pat. No. 6,642,203, U.S. Pat.
No. 6,653,280, U.S. Pat. No. 6,696,238, U.S. Pat. No. 6,727,
066, U.S. Pat. No. 6,730,659, U.S. Pat. No. 6,743,598, U.S.
Pat. No. 6,743,769, U.S. Pat. No. 6,747,007, U.S. Pat. No.
6,790,833, U.S. Pat. No. 6,794,490, U.S. Pat. No. 6,818,407,
U.S. Pat. No. 6,835,536, U.S. Pat. No. 6,835,713, U.S. Pat.
No. 6,838,435, U.S. Pat. No. 6,872,705, U.S. Pat. No. 6,875,
907, U.S. Pat. No. 6,884,776, U.S. Pat. No. 6,887,847, U.S.
Pat. No. 6,906,035, U.S. Pat. No. 6,911,524, U.S. Pat. No.
6,936,432, U.S. Pat. No. 7,001,924, U.S. Pat. No. 7,071,293,
U.S. Pat. No. 7,078,380, U.S. Pat. No. 7,091,185, U.S. Pat.
No. 7,094,759, U.S. Pat. No. 7,166,769, U.S. Pat. No. 7,244,
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710, U.S. Pat.No. 7,314,858, and U.S. Pat. No. 7,582,301, the
contents of which are incorporated by reference in their
entirety.

The anti-microbial polypeptides described herein may
block cell fusion and/or viral entry by one or more enveloped
viruses (e.g., HIV, HCV). For example, the anti-microbial
polypeptide can comprise or consist of a synthetic peptide
corresponding to a region, e.g., a consecutive sequence of at
least about 5, 10, 15, 20, 25,30, 35, 40,45, 50, 55, or 60 amino
acids of the transmembrane subunit of a viral envelope pro-
tein, e.g., HIV-1 gp120 or gp41. The amino acid and nucle-
otide sequences of HIV-1 gp120 or gp41 are described in, e.g.,
Kuiken et al., (2008). “HIV Sequence Compendium,” Los
Alamos National Laboratory.

In some embodiments, the anti-microbial polypeptide may
have at least about 75%, 80%, 85%, 90%, 95%, 100%
sequence homology to the corresponding viral protein
sequence. In some embodiments, the anti-microbial polypep-
tide may have at least about 75%, 80%, 85%, 90%, 95%, or
100% sequence homology to the corresponding viral protein
sequence.

In other embodiments, the anti-microbial polypeptide may
comprise or consist of a synthetic peptide corresponding to a
region, e.g., a consecutive sequence of at least about 5, 10, 15,
20, 25,30, 35, 40,45, 50, 55, or 60 amino acids of the binding
domain of a capsid binding protein. In some embodiments,
the anti-microbial polypeptide may have at least about 75%,
80%, 85%, 90%, 95%, or 100% sequence homology to the
corresponding sequence of the capsid binding protein.

The anti-microbial polypeptides described herein may
block protease dimerization and inhibit cleavage of viral pro-
proteins (e.g., HIV Gag-pol processing) into functional pro-
teins thereby preventing release of one or more enveloped
viruses (e.g., HIV, HCV). In some embodiments, the anti-
microbial polypeptide may have at least about 75%, 80%,
85%, 90%, 95%, 100% sequence homology to the corre-
sponding viral protein sequence.

In other embodiments, the anti-microbial polypeptide can
comprise or consist of a synthetic peptide corresponding to a
region, e.g., a consecutive sequence of at least about 5, 10, 15,
20, 25,30, 35, 40,45, 50, 55, or 60 amino acids of the binding
domain of a protease binding protein. In some embodiments,
the anti-microbial polypeptide may have at least about 75%,
80%, 85%, 90%, 95%, 100% sequence homology to the cor-
responding sequence of the protease binding protein.

The anti-microbial polypeptides described herein can
include an in vitro-evolved polypeptide directed against a
viral pathogen.

Anti-Microbial Polypeptides

Anti-microbial polypeptides (AMPs) are small peptides of
variable length, sequence and structure with broad spectrum
activity against a wide range of microorganisms including,
but not limited to, bacteria, viruses, fungi, protozoa, parasites,
prions, and tumor/cancer cells. (See, e.g., Zaiou, ] Mol Med,
2007; 85:317; herein incorporated by reference in its
entirety). It has been shown that AMPs have broad-spectrum
of rapid onset of killing activities, with potentially low levels
of induced resistance and concomitant broad anti-inflamma-
tory effects.

In some embodiments, the anti-microbial polypeptide
(e.g., an anti-bacterial polypeptide) may be under 10 kDa,
e.g., under 8 kDa, 6 kDa, 4 kDa, 2 kDa, or 1 kDa. In some
embodiments, the anti-microbial polypeptide (e.g., an anti-
bacterial polypeptide) consists of from about 6 to about 100
amino acids, e.g., from about 6 to about 75 amino acids, about
6 to about 50 amino acids, about 6 to about 25 amino acids,
about 25 to about 100 amino acids, about 50 to about 100
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amino acids, or about 75 to about 100 amino acids. In certain
embodiments, the anti-microbial polypeptide (e.g., an anti-
bacterial polypeptide) may consist of from about 15 to about
45 amino acids. In some embodiments, the anti-microbial
polypeptide (e.g., an anti-bacterial polypeptide) is substan-
tially cationic.

In some embodiments, the anti-microbial polypeptide
(e.g., an anti-bacterial polypeptide) may be substantially
amphipathic. In certain embodiments, the anti-microbial
polypeptide (e.g., an anti-bacterial polypeptide) may be sub-
stantially cationic and amphipathic. In some embodiments,
the anti-microbial polypeptide (e.g., an anti-bacterial
polypeptide) may be cytostatic to a Gram-positive bacterium.
In some embodiments, the anti-microbial polypeptide (e.g.,
an anti-bacterial polypeptide) may be cytotoxic to a Gram-
positive bacterium. In some embodiments, the anti-microbial
polypeptide (e.g., an anti-bacterial polypeptide) may be cyto-
static and cytotoxic to a Gram-positive bacterium. In some
embodiments, the anti-microbial polypeptide (e.g., an anti-
bacterial polypeptide) may be cytostatic to a Gram-negative
bacterium. In some embodiments, the anti-microbial
polypeptide (e.g., an anti-bacterial polypeptide) may be cyto-
toxic to a Gram-negative bacterium. In some embodiments,
the anti-microbial polypeptide (e.g., an anti-bacterial
polypeptide) may be cytostatic and cytotoxic to a Gram-
positive bacterium. In some embodiments, the anti-microbial
polypeptide may be cytostatic to a virus, fungus, protozoan,
parasite, prion, or a combination thereof. In some embodi-
ments, the anti-microbial polypeptide may be cytotoxic to a
virus, fungus, protozoan, parasite, prion, or a combination
thereof. In certain embodiments, the anti-microbial polypep-
tide may be cytostatic and cytotoxic to a virus, fungus, pro-
tozoan, parasite, prion, or a combination thereof. In some
embodiments, the anti-microbial polypeptide may be cyto-
toxic to a tumor or cancer cell (e.g., a human tumor and/or
cancer cell). In some embodiments, the anti-microbial
polypeptide may be cytostatic to a tumor or cancer cell (e.g.,
a human tumor and/or cancer cell). In certain embodiments,
the anti-microbial polypeptide may be cytotoxic and cyto-
static to a tumor or cancer cell (e.g., a human tumor or cancer
cell). In some embodiments, the anti-microbial polypeptide
(e.g., an anti-bacterial polypeptide) may be a secreted
polypeptide.

In some embodiments, the anti-microbial polypeptide
comprises or consists of a defensin. Exemplary defensins
include, but are not limited to, a-defensins (e.g., neutrophil
defensin 1, defensin alpha 1, neutrophil defensin 3, neutrophil
defensin 4, defensin 5, defensin 6), f-defensins (e.g., beta-
defensin 1, beta-defensin 2, beta-defensin 103, beta-defensin
107, beta-defensin 110, beta-defensin 136), and 6-defensins.
In other embodiments, the anti-microbial polypeptide com-
prises or consists of a cathelicidin (e.g., hCAP18).
Anti-Viral Polypeptides

Anti-viral polypeptides (AVPs) are small peptides of vari-
able length, sequence and structure with broad spectrum
activity against a wide range of viruses. See, e.g., Zaiou, J Mol
Med, 2007; 85:317. It has been shown that AVPs have a
broad-spectrum of rapid onset of killing activities, with
potentially low levels of induced resistance and concomitant
broad anti-inflammatory effects. In some embodiments, the
anti-viral polypeptide is under 10 kDa, e.g., under 8 kDa, 6
kDa, 4 kDa, 2 kDa, or 1 kDa. In some embodiments, the
anti-viral polypeptide comprises or consists of from about 6
to about 100 amino acids, e.g., from about 6 to about 75 amino
acids, about 6 to about 50 amino acids, about 6 to about 25
amino acids, about 25 to about 100 amino acids, about 50 to
about 100 amino acids, or about 75 to about 100 amino acids.
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In certain embodiments, the anti-viral polypeptide comprises
or consists of from about 15 to about 45 amino acids. In some
embodiments, the anti-viral polypeptide is substantially cat-
ionic. In some embodiments, the anti-viral polypeptide is
substantially amphipathic. In certain embodiments, the anti-
viral polypeptide is substantially cationic and amphipathic. In
some embodiments, the anti-viral polypeptide is cytostatic to
a virus. In some embodiments, the anti-viral polypeptide is
cytotoxic to a virus. In some embodiments, the anti-viral
polypeptide is cytostatic and cytotoxic to a virus. In some
embodiments, the anti-viral polypeptide is cytostatic to a
bacterium, fungus, protozoan, parasite, prion, or a combina-
tion thereof. In some embodiments, the anti-viral polypeptide
is cytotoxic to a bacterium, fungus, protozoan, parasite, prion
or a combination thereof. In certain embodiments, the anti-
viral polypeptide is cytostatic and cytotoxic to a bacterium,
fungus, protozoan, parasite, prion, or a combination thereof.
In some embodiments, the anti-viral polypeptide is cytotoxic
to a tumor or cancer cell (e.g., a human cancer cell). In some
embodiments, the anti-viral polypeptide is cytostatic to a
tumor or cancer cell (e.g., a human cancer cell). In certain
embodiments, the anti-viral polypeptide is cytotoxic and
cytostatic to a tumor or cancer cell (e.g., a human cancer cell).
In some embodiments, the anti-viral polypeptide is a secreted
polypeptide.

Cytotoxic Nucleosides

In one embodiment, the polynucleotides, primary con-
structs or mmRNA of the present invention may incorporate
one or more cytotoxic nucleosides. For example, cytotoxic
nucleosides may be incorporated into polynucleotides, pri-
mary constructs or mmRNA such as bifunctional modified
RNAs or mRNAs. Cytotoxic nucleoside anticancer agents
include, but are not limited to, adenosine arabinoside, cytara-
bine, cytosine arabinoside, 5-fluorouracil, fludarabine, floxu-
ridine, FTORAFUR® (a combination of tegafur and uracil),
tegafur ((RS)-5-fluoro-1-(tetrahydrofuran-2-yl)pyrimidine-
2,4(1H,3H)-dione), and 6-mercaptopurine.

A number of cytotoxic nucleoside analogues are in clinical
use, or have been the subject of clinical trials, as anticancer
agents. Examples of such analogues include, but are not lim-
ited to, cytarabine, gemcitabine, troxacitabine, decitabine,
tezacitabine, 2'-deoxy-2'-methylidenecytidine (DMDC),
cladribine, clofarabine, 5-azacytidine, 4'-thio-aracytidine,
cyclopentenylcytosine and 1-(2-C-cyano-2-deoxy-beta-D-
arabino-pentofuranosyl)-cytosine. Another example of such
acompound is fludarabine phosphate. These compounds may
be administered systemically and may have side effects
which are typical of cytotoxic agents such as, but not limited
to, little or no specificity for tumor cells over proliferating
normal cells.

A number of prodrugs of cytotoxic nucleoside analogues
are also reported in the art. Examples include, but are not
limited to, N4-behenoyl-1-beta-D-arabinofuranosylcytosine,
N4-octadecyl-1-beta-D-arabinofuranosylcytosine,
N4-palmitoyl-1-(2-C-cyano-2-deoxy-beta-D-arabino-pento-
furanosyl)cytosine, and P-4055 (cytarabine 5'-elaidic acid
ester). In general, these prodrugs may be converted into the
active drugs mainly in the liver and systemic circulation and
display little or no selective release of active drug in the tumor
tissue. For example, capecitabine, a prodrug of 5'-deoxy-5-
fluorocytidine (and eventually of 5-fluorouracil), is metabo-
lized both in the liver and in the tumor tissue. A series of
capecitabine analogues containing “an easily hydrolysable
radical under physiological conditions” has been claimed by
Fujiu et al. (U.S. Pat. No. 4,966,891) and is herein incorpo-
rated by reference. The series described by Fujiu includes N4
alkyl and aralkyl carbamates of 5'-deoxy-5-fluorocytidine
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and the implication that these compounds will be activated by
hydrolysis under normal physiological conditions to provide
5'-deoxy-5-fluorocytidine.

A series of cytarabine N4-carbamates has been by reported
by Fadl et al (Pharmazie. 1995, 50, 382-7, herein incorporated
by reference) in which compounds were designed to convert
into cytarabine in the liver and plasma. WO 2004/041203,
herein incorporated by reference, discloses prodrugs of gem-
citabine, where some of the prodrugs are N4-carbamates.
These compounds were designed to overcome the gas-
trointestinal toxicity of gemcitabine and were intended to
provide gemcitabine by hydrolytic release in the liver and
plasma after absorption of the intact prodrug from the gas-
trointestinal tract. Nomura et al (Bioorg Med. Chem. 2003,
11, 2453-61, herein incorporated by reference) have
described acetal derivatives of 1-(3-C-ethynyl-(3-D-ribo-
pentofaranosyl)cytosine which, on bioreduction, produced an
intermediate that required further hydrolysis under acidic
conditions to produce a cytotoxic nucleoside compound.

Cytotoxic nucleotides which may be chemotherapeutic
also include, but are not limited to, pyrazolo[3,4-D]-pyrim-
idines, allopurinol, azathioprine, capecitabine, cytosine ara-
binoside, fluorouracil, mercaptopurine, 6-thioguanine, acy-
clovir, ara-adenosine, ribavirin, 7-deaza-adenosine, 7-deaza-
guanosine,  6-aza-uracil,  6-aza-cytidine, thymidine
ribonucleotide, 5-bromodeoxyuridine, 2-chloro-purine, and
inosine, or combinations thereof.

Flanking Regions Untranslated Regions (UTRs)

Untranslated regions (UTRs) of a gene are transcribed but
not translated. The 5'UTR starts at the transcription start site
and continues to the start codon but does not include the start
codon; whereas, the 3'UTR starts immediately following the
stop codon and continues until the transcriptional termination
signal. There is growing body of evidence about the regula-
tory roles played by the UTRs in terms of stability of the
nucleic acid molecule and translation. The regulatory features
of'a UTR can be incorporated into the polynucleotides, pri-
mary constructs and/or mmRNA of the present invention to
enhance the stability of the molecule. The specific features
can also be incorporated to ensure controlled down-regula-
tion of the transcript in case they are misdirected to undesired
organs sites.

5' UTR and Translation Initiation

Natural 5'UTRs bear features which play roles in for trans-
lation initiation. They harbor signatures like Kozak sequences
which are commonly known to be involved in the process by
which the ribosome initiates translation of many genes.
Kozak sequences have the consensus CCR(A/G)CCAUGG,
where R is a purine (adenine or guanine) three bases upstream
of' the start codon (AUG), which is followed by another ‘G’.
S'UTR also have been known to form secondary structures
which are involved in elongation factor binding.

By engineering the features typically found in abundantly
expressed genes of specific target organs, one can enhance the
stability and protein production of the polynucleotides, pri-
mary constructs or mmRNA of the invention. For example,
introduction of 5' UTR of liver-expressed mRNA, such as
albumin, serum amyloid A, Apolipoprotein A/B/E, transfer-
rin, alpha fetoprotein, erythropoietin, or Factor VIII, could be
used to enhance expression of a nucleic acid molecule, such
as ammRNA, in hepatic cell lines or liver. Likewise, use of 5'
UTR from other tissue-specific mRNA to improve expression
in that tissue is possible for muscle (MyoD, Myosin, Myo-
globin, Myogenin, Herculin), for endothelial cells (Tie-1,
CD36), for myeloid cells (C/EBP, AML1, G-CSF, GM-CSF,
CD11b, MSR, Fr-1, i-NOS), for leukocytes (CD45, CD18),
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for adipose tissue (CD36, GLUT4, ACRP30, adiponectin)
and for lung epithelial cells (SP-A/B/C/D).

Other non-UTR sequences may be incorporated into the 5'
(or3'UTR) UTRs. For example, introns or portions of introns
sequences may be incorporated into the flanking regions of
the polynucleotides, primary constructs or mmRNA of the
invention. Incorporation of intronic sequences may increase
protein production as well as mRNA levels.
3'UTR and the AU Rich Elements

3' UTRs are known to have stretches of Adenosines and
Uridines embedded in them. These AU rich signatures are
particularly prevalent in genes with high rates of turnover.
Based on their sequence features and functional properties,
the AU rich elements (AREs) can be separated into three
classes (Chen et al, 1995): Class I AREs contain several
dispersed copies of an AUUUA motif within U-rich regions.
C-Myc and MyoD contain class I AREs. Class II AREs pos-
sess two or more overlapping UUAUUUA(U/A)(U/A) non-
amers. Molecules containing this type of AREs include GM-
CSF and TNF-a. Class III ARES are less well defined. These
U rich regions do not contain an AUUUA motif. c-Jun and
Myogenin are two well-studied examples of this class. Most
proteins binding to the AREs are known to destabilize the
messenger, whereas members of the ELAV family, most nota-
bly HuR, have been documented to increase the stability of
mRNA. HuR binds to AREs of all the three classes. Engineer-
ing the HuR specific binding sites into the 3' UTR of nucleic
acid molecules will lead to HuR binding and thus, stabiliza-
tion of the message in vivo.

Introduction, removal or modification of 3' UTR AU rich
elements (ARFEs) can be used to modulate the stability of
polynucleotides, primary constructs or mmRNA of the inven-
tion. When engineering specific polynucleotides, primary
constructs or mmRNA, one or more copies of an ARE can be
introduced to make polynucleotides, primary constructs or
mmRNA of'the invention less stable and thereby curtail trans-
lation and decrease production of the resultant protein. Like-
wise, AREs can be identified and removed or mutated to
increase the intracellular stability and thus increase transla-
tion and production of the resultant protein. Transfection
experiments can be conducted in relevant cell lines, using
polynucleotides, primary constructs or mmRNA of the inven-
tion and protein production can be assayed at various time
points post-transfection. For example, cells can be trans-
fected with different ARE-engineering molecules and by
using an ELISA kit to the relevant protein and assaying pro-
tein produced at 6 hour, 12 hour, 24 hour, 48 hour, and 7 days
post-transfection.

Incorporating microRNA Binding Sites

microRNAs (or miRNA) are 19-25 nucleotide long non-
coding RNAs that bind to the 3'UTR of nucleic acid mol-
ecules and down-regulate gene expression either by reducing
nucleic acid molecule stability or by inhibiting translation.
The polynucleotides, primary constructs or mmRNA of the
invention may comprise one or more microRNA target
sequences, microRNA sequences, or microRNA seeds. Such
sequences may correspond to any known microRNA such as
those taught in US Publication US2005/0261218 and US
Publication US2005/0059005, the contents of which are
incorporated herein by reference in their entirety.

A microRNA sequence comprises a “seed” region, i.e., a
sequence in the region of positions 2-8 of the mature
microRNA, which sequence has perfect Watson-Crick
complementarity to the miRNA target sequence. A
microRNA seed may comprise positions 2-8 or 2-7 of the
mature microRNA. In some embodiments, a microRNA seed
may comprise 7 nucleotides (e.g., nucleotides 2-8 of the
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mature microRNA), wherein the seed-complementary site in
the corresponding miRNA target is flanked by an adenine (A)
opposed to microRNA position 1. In some embodiments, a
microRNA seed may comprise 6 nucleotides (e.g., nucle-
otides 2-7 of the mature microRNA), wherein the seed-
complementary site in the corresponding miRNA target is
flanked byan adenine (A) opposed to microRNA position 1.
See for example, Grimson A, Farh K K, Johnston W K,
Garrett-Engele P, Lim L P, Bartel D P; Mol. Cell. 2007 Jul. 6;
27(1):91-105; each of which is herein incorporated by refer-
ence in their entirety. The bases of the microRNA seed have
complete complementarity with the target sequence. By engi-
neering microRNA target sequences into the 3'UTR of poly-
nucleotides, primary constructs or mmRNA of the invention
one can target the molecule for degradation or reduced trans-
lation, provided the microRNA in question is available. This
process will reduce the hazard of off target effects upon
nucleic acid molecule delivery. Identification of microRNA,
microRNA target regions, and their expression patterns and
role in biology have been reported (Bonauer et al., Curr Drug
Targets 2010 11:943-949; Anand and Cheresh Curr Opin
Hematol 2011 18:171-176; Contreras and Rao Leukemia
2012 26:404-413 (2011 Dec. 20. doi: 10.1038/leu.2011.356);
Bartel Cell 2009 136:215-233; Landgraf et al, Cell, 2007
129:1401-1414; each of which is herein incorporated by ref-
erence in its entirety).

For example, if the nucleic acid molecule is an mRNA and
is not intended to be delivered to the liver but ends up there,
then miR-122, a microRNA abundant in liver, can inhibit the
expression of the gene of interest if one or multiple target sites
of miR-122 are engineered into the 3' UTR of the polynucle-
otides, primary constructs or mmRNA. Introduction of one or
multiple binding sites for different microRNA can be engi-
neered to further decrease the longevity, stability, and protein
translation of a polynucleotides, primary constructs or
mmRNA.

As used herein, the term “microRNA site” refers to a
microRNA target site or a microRNA recognition site, or any
nucleotide sequence to which a microRNA binds or associ-
ates. It should be understood that “binding” may follow tra-
ditional Watson-Crick hybridization rules or may reflect any
stable association of the microRNA with the target sequence
at or adjacent to the microRNA site.

Conversely, for the purposes of the polynucleotides, pri-
mary constructs or mmRNA of the present invention,
microRNA binding sites can be engineered out of (i.e.
removed from) sequences in which they naturally occur in
order to increase protein expression in specific tissues. For
example, miR-122 binding sites may be removed to improve
protein expression in the liver. Regulation of expression in
multiple tissues can be accomplished through introduction or
removal or one or several microRNA binding sites.

Examples of tissues where microRNA are known to regu-
late mRNA, and thereby protein expression, include, but are
not limited to, liver (miR-122), muscle (miR-133, miR-206,
miR-208), endothelial cells (miR-17-92, miR-126), myeloid
cells (miR-142-3p, miR-142-5p, miR-16, miR-21, miR-223,
miR-24, miR-27), adipose tissue (let-7, miR-30c), heart
(miR-1d, miR-149), kidney (miR-192, miR-194, miR-204),
and lung epithelial cells (let-7, miR-133, miR-126).
MicroRNA can also regulate complex biological processes
such as angiogenesis (miR-132) (Anand and Cheresh Curr
Opin Hematol 2011 18:171-176; herein incorporated by ref-
erence in its entirety). In the polynucleotides, primary con-
structs or mmRNA of the present invention, binding sites for
microRNAs that are involved in such processes may be
removed or introduced, in order to tailor the expression of the



US 9,050,297 B2

35

polynucleotides, primary constructs or mmRNA expression
to biologically relevant cell types or to the context of relevant
biological processes. A listing of MicroRNA, miR sequences
and miR binding sites is listed in Table 9 of U.S. Provisional
Application No. 61/753,661 filed Jan. 17, 2013, in Table 9 of
U.S. Provisional Application No. 61/754,159 filed Jan. 18,
2013, and in Table 7 of U.S. Provisional Application No.
61/758,921 filed Jan. 31, 2013, each of which are herein
incorporated by reference in their entireties.

Examples of use of microRNA to drive tissue or disease-
specific gene expression are listed (Getner and Naldini, Tis-
sue Antigens. 2012, 80:393-403; herein incorporated by ref-
erence in its entirety). In addition, microRNA seed sites can
be incorporated into mRNA to decrease expression in certain
cells which results in a biological improvement. An example
of this is incorporation of miR-142 sites into a UGT1Al-
expressing lentiviral vector. The presence of miR-142 seed
sites reduced expression in hematopoietic cells, and as a
consequence reduced expression in antigen-presentating
cells, leading to the absence of an immune response against
the virally expressed UGT1A1 (Schmitt et al., Gastroenter-
ology 2010; 139:999-1007; Gonzalez-Asequinolaza et al.
Gastroenterology 2010, 139:726-729; both herein incorpo-
rated by reference in its entirety). Incorporation of miR-142
sites into modified mRNA could not only reduce expression
of'the encoded protein in hematopoietic cells, but could also
reduce or abolish immune responses to the mRNA-encoded
protein. Incorporation of miR-142 seed sites (one or multiple)
into mRNA would be important in the case of treatment of
patients with complete protein deficiencies (UGT1A1 type |,
LDLR-deficient patients, CRIM-negative Pompe patients,
etc.).

Lastly, through an understanding of the expression patterns
of microRNA in different cell types, polynucleotides, pri-
mary constructs or mmRNA can be engineered for more
targeted expression in specific cell types or only under spe-
cific biological conditions. Through introduction of tissue-
specific microRNA binding sites, polynucleotides, primary
constructs or mmRNA could be designed that would be opti-
mal for protein expression in a tissue or in the context of a
biological condition.

Transfection experiments can be conducted in relevant cell
lines, using engineered polynucleotides, primary constructs
or mmRNA and protein production can be assayed at various
time points post-transfection. For example, cells can be trans-
fected with different microRNA binding site-engineering
polynucleotides, primary constructs or mmRNA and by using
an ELISA kit to the relevant protein and assaying protein
produced at 6 hour, 12 hour, 24 hour, 48 hour, 72 hour and 7
days post-transfection. In vivo experiments can also be con-
ducted using microRNA-binding site-engineered molecules
to examine changes in tissue-specific expression of formu-
lated polynucleotides, primary constructs or mmRNA.

5' Capping

The 5' cap structure of an mRNA is involved in nuclear
export, increasing mRNA stability and binds the mRNA Cap
Binding Protein (CBP), which is responsible for mRNA sta-
bility in the cell and translation competency through the asso-
ciation of CBP with poly(A) binding protein to form the
mature cyclic mRNA species. The cap further assists the
removal of 5' proximal introns removal during mRNA splic-
ing.

Endogenous mRNA molecules may be 5'-end capped gen-
erating a 5'-ppp-5'-triphosphate linkage between a terminal
guanosine cap residue and the 5'-terminal transcribed sense
nucleotide of the mRNA molecule. This 5'-guanylate cap may
then be methylated to generate an N7-methyl-guanylate resi-
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due. The ribose sugars of the terminal and/or anteterminal
transcribed nucleotides of the 5' end of the mRNA may
optionally also be 2'-O-methylated. 5'-decapping through
hydrolysis and cleavage of the guanylate cap structure may
target a nucleic acid molecule, such as an mRNA molecule,
for degradation.

Modifications to the polynucleotides, primary constructs,
and mmRNA of the present invention may generate a non-
hydrolyzable cap structure preventing decapping and thus
increasing mRNA half-life. Because cap structure hydrolysis
requires cleavage of 5'-ppp-5' phosphorodiester linkages,
modified nucleotides may be used during the capping reac-
tion. For example, a Vaccinia Capping Enzyme from New
England Biolabs (Ipswich, Mass.) may be used with a.-thio-
guanosine nucleotides according to the manufacturer’s
instructions to create a phosphorothioate linkage in the
5'-ppp-5' cap. Additional modified guanosine nucleotides
may be used such as c.-methyl-phosphonate and seleno-phos-
phate nucleotides.

Additional modifications include, but are not limited to,
2'-O-methylation of the ribose sugars of 5'-terminal and/or
S'-anteterminal nucleotides of the mRNA (as mentioned
above) on the 2'-hydroxyl group of the sugar ring. Multiple
distinct 5'-cap structures can be used to generate the 5'-cap of
a nucleic acid molecule, such as an mRNA molecule.

Cap analogs, which herein are also referred to as synthetic
cap analogs, chemical caps, chemical cap analogs, or struc-
tural or functional cap analogs, differ from natural (i.e.
endogenous, wild-type or physiological) 5'-caps in their
chemical structure, while retaining cap function. Cap analogs
may be chemically (i.e. non-enzymatically) or enzymatically
synthesized and/or linked to a nucleic acid molecule.

For example, the Anti-Reverse Cap Analog (ARCA) cap
contains two guanines linked by a 5'-5'-triphosphate group,
wherein one guanine contains an N7 methyl group as well as
a 3'-O-methyl group (i.e., N7,3'-O-dimethyl-guanosine-5'-
triphosphate-5'-guanosine (m’G-3' mppp-G; which may
equivalently be designated 3' O-Me-m7G(5)ppp(5")G). The
3'-0O atom of the other, unmodified, guanine becomes linked
to the 5'-terminal nucleotide of the capped nucleic acid mol-
ecule (e.g. an mRNA or mmRNA). The N7- and 3'-O-methy-
lated guanine provides the terminal moiety of the capped
nucleic acid molecule (e.g. mRNA or mmRNA).

Another exemplary cap is mCAP, which is similar to
ARCA but has a 2'-p-methyl group on guanosine (i.e., N7,2'-
O-dimethyl-guanosine-5'-triphosphate-5'-guanosine,
m’Gm-ppp-G).

While cap analogs allow for the concomitant capping of a
nucleic acid molecule in an in vitro transcription reaction, up
to 20% of transcripts can remain uncapped. This, as well as
the structural differences of a cap analog from an endogenous
S'-cap structures of nucleic acids produced by the endog-
enous, cellular transcription machinery, may lead to reduced
translational competency and reduced cellular stability.

Polynucleotides, primary constructs and mmRNA of the
invention may also be capped post-transcriptionally, using
enzymes, in order to generate more authentic 5'-cap struc-
tures. As used herein, the phrase “more authentic” refers to a
feature that closely mirrors or mimics, either structurally or
functionally, an endogenous or wild type feature. That is, a
“more authentic” feature is better representative of an endog-
enous, wild-type, natural or physiological cellular function
and/or structure as compared to synthetic features or analogs,
etc., of the prior art, or which outperforms the corresponding
endogenous, wild-type, natural or physiological feature in
one or more respects. Non-limiting examples of more authen-
tic 5' cap structures of the present invention are those which,
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among other things, have enhanced binding of cap binding
proteins, increased halflife, reduced susceptibility to 5' endo-
nucleases and/or reduced 5' decapping, as compared to syn-
thetic 5' cap structures known in the art (or to a wild-type,
natural or physiological 5' cap structure). For example,
recombinant Vaccinia Virus Capping Enzyme and recombi-
nant 2'-O-methyltransferase enzyme can create a canonical
5'-5'-triphosphate linkage between the 5'-terminal nucleotide
of an mRNA and a guanine cap nucleotide wherein the cap
guanine contains an N7 methylation and the 5'-terminal
nucleotide of the mRNA contains a 2'-O-methyl. Such a
structure is termed the Cap1 structure. This cap results in a
higher translational-competency and cellular stability and a
reduced activation of cellular pro-inflammatory cytokines, as
compared, e.g., to other 5' cap analog structures known in the
art. Cap structures include, but are not limited to, 7mG(5")ppp
(5YN, pN2p (cap 0), 7TmG(5)ppp(5")NImpNp (cap 1), and
TmG(5")-ppp(5SHN1mpN2 mp (cap 2).

Because the polynucleotides, primary constructs or
mmRNA may be capped post-transcriptionally, and because
this process is more efficient, nearly 100% of the polynucle-
otides, primary constructs or mmRNA may be capped. This is
in contrast to ~80% when a cap analog is linked to an mRNA
in the course of an in vitro transcription reaction.

According to the present invention, 5' terminal caps may
include endogenous caps or cap analogs. According to the
present invention, a 5' terminal cap may comprise a guanine
analog. Useful guanine analogs include, but are not limited to,
inosine, N1-methyl-guanosine, 2' fluoro-guanosine, 7-deaza-
guanosine, 8-oxo-guanosine, 2-amino-guanosine, LNA-gua-
nosine, and 2-azido-guanosine.

Viral Sequences

Additional viral sequences such as, but not limited to, the
translation enhancer sequence of the barley yellow dwarf
virus (BYDV-PAV), the Jaagsiekte sheep retrovirus (JSRV)
and/or the Enzootic nasal tumor virus (See e.g., International
Pub. No. W0O2012129648; herein incorporated by reference
in its entirety) can be engineered and inserted in the 3' UTR of
the polynucleotides, primary constructs or mmRNA of the
invention and can stimulate the translation of the construct in
vitro and in vivo. Transfection experiments can be conducted
in relevant cell lines at and protein production can be assayed
by ELISA at 12 hr, 24 hr, 48 hr, 72 hr and day 7 post-
transfection.

IRES Sequences

Further, provided are polynucleotides, primary constructs
or mmRNA which may contain an internal ribosome entry
site (IRES). First identified as a feature Picorna virus RNA,
IRES plays an important role in initiating protein synthesis in
absence of the 5' cap structure. An IRES may act as the sole
ribosome binding site, or may serve as one of multiple ribo-
some binding sites of an mRNA. Polynucleotides, primary
constructs or mmRNA containing more than one functional
ribosome binding site may encode several peptides or
polypeptides that are translated independently by the ribo-
somes (“multicistronic nucleic acid molecules™). When poly-
nucleotides, primary constructs or mmRNA are provided
with an IRES, further optionally provided is a second trans-
latable region. Examples of IRES sequences that can be used
according to the invention include without limitation, those
from picornaviruses (e.g. FMDV), pest viruses (CFFV), polio
viruses (PV), encephalomyocarditis viruses (ECMV), foot-
and-mouth disease viruses (FMDV), hepatitis C viruses
(HCV), classical swine fever viruses (CSFV), murine leuke-
mia virus (MLV), simian immune deficiency viruses (SIV) or
cricket paralysis viruses (CrPV).
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Poly-A Tails

During RNA processing, a long chain of adenine nucle-
otides (poly-A tail) may be added to a polynucleotide such as
an mRNA molecules in order to increase stability. Immedi-
ately after transcription, the 3' end of the transcript may be
cleaved to free a 3' hydroxyl. Then poly-A polymerase adds a
chain of adenine nucleotides to the RNA. The process, called
polyadenylation, adds a poly-A tail that can be between, for
example, approximately 100 and 250 residues long.

It has been discovered that unique poly-A tail lengths pro-
vide certain advantages to the polynucleotides, primary con-
structs or mmRNA of the present invention.

Generally, the length of a poly-A tail of the present inven-
tion is greater than 30 nucleotides in length. In another
embodiment, the poly-A tail is greater than 35 nucleotides in
length (e.g., at least or greater than about 35, 40, 45, 50, 55,
60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350,
400, 450, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300,
1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,500, and
3,000 nucleotides). In some embodiments, the polynucle-
otide, primary construct, or mmRNA includes from about 30
to about 3,000 nucleotides (e.g., from 30 to 50, from 30 to
100, from 30 to 250, from 30 to 500, from 30 to 750, from 30
to 1,000, from 30to 1,500, from 30 to 2,000, from 30t0 2,500,
from 50 to 100, from 50 to 250, from 50 to 500, from 50 to
750, from 50 to 1,000, from 50 to 1,500, from 50 to 2,000,
from 50 to 2,500, from 50 to 3,000, from 100 to 500, from 100
to 750, from 100 to 1,000, from 100 to 1,500, from 100 to
2,000, from 100 to 2,500, from 100 to 3,000, from 500to 750,
from 500 to 1,000, from 500 to 1,500, from 500 to 2,000, from
500 to 2,500, from 500 to 3,000, from 1,000 to 1,500, from
1,000 to 2,000, from 1,000 to 2,500, from 1,000 to 3,000,
from 1,500 to 2,000, from 1,500 to 2,500, from 1,500 to
3,000, from 2,000 to 3,000, from 2,000 to 2,500, and from
2,500 to 3,000).

In one embodiment, the poly-A tail is designed relative to
the length of the overall polynucleotides, primary constructs
or mmRNA. This design may be based on the length of the
coding region, the length of a particular feature or region
(such as the first or flanking regions), or based on the length of
the ultimate product expressed from the polynucleotides, pri-
mary constructs or mmRNA.

In this context the poly-A tail may be 10, 20, 30, 40, 50, 60,
70, 80, 90, or 100% greater in length than the polynucleotides,
primary constructs or mmRNA or feature thereof. The poly-A
tail may also be designed as a fraction of polynucleotides,
primary constructs or mmRNA to which it belongs. In this
context, the poly-A tail may be 10, 20, 30, 40, 50, 60, 70, 80,
or 90% or more of the total length of the construct or the total
length of the construct minus the poly-A tail. Further, engi-
neered binding sites and conjugation of polynucleotides, pri-
mary constructs or mmRNA for Poly-A binding protein may
enhance expression.

Additionally, multiple distinct polynucleotides, primary
constructs or mmRNA may be linked together to the PABP
(Poly-A binding protein) through the 3'-end using modified
nucleotides at the 3'-terminus of the poly-A tail. Transfection
experiments can be conducted in relevant cell lines at and
protein production can be assayed by ELISA at 12 hr, 24 hr,
48 hr, 72 hr and day 7 post-transfection.

In one embodiment, the polynucleotide primary constructs
of the present invention are designed to include a polyA-G
Quartet. The G-quartet is a cyclic hydrogen bonded array of
four guanine nucleotides that can be formed by G-rich
sequences in both DNA and RNA. In this embodiment, the
G-quartet is incorporated at the end of the poly-A tail. The
resultant mmRNA construct is assayed for stability, protein
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production and other parameters including half-life at various
time points. It has been discovered that the poly A-G quartet
results in protein production equivalent to at least 75% of that
seen using a poly-A tail of 120 nucleotides alone.
Quantification

In one embodiment, the polynucleotides, primary con-
structs or mmRNA of the present invention may be quantified
in exosomes derived from one or more bodily fluid. As used
herein “bodily fluids” include peripheral blood, serum,
plasma, ascites, urine, cerebrospinal fluid (CSF), sputum,
saliva, bone marrow, synovial fluid, aqueous humor, amniotic
fluid, cerumen, breast milk, broncheoalveolar lavage fluid,
semen, prostatic fluid, cowper’s fluid or pre-ejaculatory fluid,
sweat, fecal matter, hair, tears, cyst fluid, pleural and perito-
neal fluid, pericardial fluid, lymph, chyme, chyle, bile, inter-
stitial fluid, menses, pus, sebum, vomit, vaginal secretions,
mucosal secretion, stool water, pancreatic juice, lavage fluids
from sinus cavities, bronchopulmonary aspirates, blastocyl
cavity fluid, and umbilical cord blood. Alternatively, exo-
somes may be retrieved from an organ selected from the
group consisting of lung, heart, pancreas, stomach, intestine,
bladder, kidney, ovary, testis, skin, colon, breast, prostate,
brain, esophagus, liver, and placenta.

In the quantification method, a sample of not more than 2
ml. is obtained from the subject and the exosomes isolated by
size exclusion chromatography, density gradient centrifuga-
tion, differential centrifugation, nanomembrane ultrafiltra-
tion, immunoabsorbent capture, affinity purification, microf-
luidic separation, or combinations thereof. In the analysis, the
level or concentration of a polynucleotide, primary construct
or mmRNA may be an expression level, presence, absence,
truncation or alteration of the administered construct. It is
advantageous to correlate the level with one or more clinical
phenotypes or with an assay for a human disease biomarker.
The assay may be performed using construct specific probes,
cytometry, qRT-PCR, real-time PCR, PCR, flow cytometry,
electrophoresis, mass spectrometry, or combinations thereof
while the exosomes may be isolated using immunohis-
tochemical methods such as enzyme linked immunosorbent
assay (ELISA) methods. Exosomes may also be isolated by
size exclusion chromatography, density gradient centrifuga-
tion, differential centrifugation, nanomembrane ultrafiltra-
tion, immunoabsorbent capture, affinity purification, microf-
luidic separation, or combinations thereof.

These methods afford the investigator the ability to moni-
tor, in real time, the level of polynucleotides, primary con-
structs or mmRNA remaining or delivered. This is possible
because the polynucleotides, primary constructs or mmRNA
of'the present invention differ from the endogenous forms due
to the structural or chemical modifications.

II. DESIGN AND SYNTHESIS OF mmRNA

Polynucleotides, primary constructs or mmRNA for use in
accordance with the invention may be prepared according to
any available technique including, but not limited to chemical
synthesis, enzymatic synthesis, which is generally termed in
vitro transcription (IVT) or enzymatic or chemical cleavage
of'alonger precursor, etc. Methods of synthesizing RNAs are
known in the art (see, e.g., Gait, M. J. (ed.) Oligonucleotide
synthesis: a practical approach, Oxford [Oxfordshire],
Washington, D.C.: IRL Press, 1984; and Herdewijn, P. (ed.)
Oligonucleotide synthesis: methods and applications, Meth-
ods in Molecular Biology, v. 288 (Clifton, N.J.) Totowa, N.J.:
Humana Press, 2005; both of which are incorporated herein
by reference).
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The process of design and synthesis of the primary con-
structs of the invention generally includes the steps of gene
construction, mRNA production (either with or without
modifications) and purification. In the enzymatic synthesis
method, a target polynucleotide sequence encoding the
polypeptide of interest is first selected for incorporation into
avector which will be amplified to produce a cDNA template.
Optionally, the target polynucleotide sequence and/or any
flanking sequences may be codon optimized. The cDNA tem-
plate is then used to produce mRNA through in vitro tran-
scription (IVT). After production, the mRNA may undergo
purification and clean-up processes. The steps of which are
provided in more detail below.

Gene Construction

The step of gene construction may include, but is not lim-
ited to gene synthesis, vector amplification, plasmid purifica-
tion, plasmid linearization and clean-up, and cDNA template
synthesis and clean-up.

Gene Synthesis

Once a polypeptide of interest, or target, is selected for
production, a primary construct is designed. Within the pri-
mary construct, a first region of linked nucleosides encoding
the polypeptide of interest may be constructed using an open
reading frame (ORF) of a selected nucleic acid (DNA or
RNA) transcript. The ORF may comprise the wild type ORF,
an isoform, variant or a fragment thereof. As used herein, an
“open reading frame” or “ORF” is meant to refer to a nucleic
acid sequence (DNA or RNA) which is capable of encoding a
polypeptide of interest. ORFs often begin with the start
codon, ATG and end with a nonsense or termination codon or
signal.

Further, the nucleotide sequence of the first region may be
codon optimized. Codon optimization methods are known in
the art and may be useful in efforts to achieve one or more of
several goals. These goals include to match codon frequen-
cies in target and host organisms to ensure proper folding,
bias GC content to increase mRNA stability or reduce sec-
ondary structures, minimize tandem repeat codons or base
runs that may impair gene construction or expression, cus-
tomize transcriptional and translational control regions,
insert or remove protein trafficking sequences, remove/add
post translation modification sites in encoded protein (e.g.
glycosylation sites), add, remove or shuffle protein domains,
insert or delete restriction sites, modify ribosome binding
sites and mRNA degradation sites, to adjust translational
rates to allow the various domains of the protein to fold
properly, or to reduce or eliminate problem secondary struc-
tures within the mRNA. Codon optimization tools, algo-
rithms and services are known in the art, non-limiting
examples include services from GeneArt (Life Technolo-
gies), DNA2.0 (Menlo Park Calif.) and/or proprietary meth-
ods. In one embodiment, the ORF sequence is optimized
using optimization algorithms. Codon options for each amino
acid are given in Table 1.

TABLE 1

Codon Optionsg

Single
Letter
Code

Amino Acid Codon Options

Isoleucine I ATT, ATC, ATA
Leucine L CTT, CTC, CTA, CTG, TTA, TTG
Valine v GTT, GTC, GTA, GTG
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TABLE 1-continued

Codon Options

Single
Letter
Code

Amino Acid Codon Options

PhenylalanineF TTT, TTC

Methionine M ATG

Cysteine c TGT, TGC

Alanine A GCT, GCC, GCA, GCG
Glycine G GGT, GGC, GGA, GGG
Proline P CCT, CCC, CCA, CCG
Threonine T ACT, ACC, ACA, ACG

Serine s TCT, TCC, TCA, TCG, AGT, AGC
Tyrosine Y TAT, TAC

Tryptophan W TGG

Glutamine Q CAA, CAG

Asparagine N AAT, AAC

Histidine H CAT, CAC

Glutamic E GAA, GAG

acid

Aspartic D GAT, GAC

acid

Lysine K AAA, AAG

Arginine R CGT, CGC, CGA, CGG, AGA, AGG
Seleno- Sec UGA in mRNA in presence
cysteine of Selenocystein insertion

element (SECIS)

Stop codons Stop TAA, TAG, TGA

Features, which may be considered beneficial in some
embodiments of the present invention, may be encoded by the
primary construct and may flank the ORF as a first or second
flanking region. The flanking regions may be incorporated
into the primary construct before and/or after optimization of
the ORF. It is not required that a primary construct contain
both a §' and 3' flanking region. Examples of such features
include, but are not limited to, untranslated regions (UTRs),
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Kozak sequences, an oligo(dT) sequence, and detectable tags
and may include multiple cloning sites which may have Xbal
recognition.

In some embodiments, a 5' UTR and/or a 3' UTR may be
provided as flanking regions. Multiple 5' or 3' UTRs may be
included in the flanking regions and may be the same or of
different sequences. Any portion of the flanking regions,
including none, may be codon optimized and any may inde-
pendently contain one or more different structural or chemi-
cal modifications, before and/or after codon optimization.
Combinations of features may be included in the first and
second flanking regions and may be contained within other
features. For example, the ORF may be flanked by a 5' UTR
which may contain a strong Kozak translational initiation
signal and/or a 3' UTR which may include an oligo(dT)
sequence for templated addition of a poly-A tail. S'UTR may
comprise a first polynucleotide fragment and a second poly-
nucleotide fragment from the same and/or different genes
such as the S'UTRs described in US Patent Application Pub-
lication No. 20100293625, herein incorporated by reference
in its entirety.

Tables 2 and 3 provide a listing of exemplary UTRs which
may be utilized in the primary construct of the present inven-
tion as flanking regions. Shown in Table 2 is a listing of a
S'-untranslated region of the invention. Variants of 5' UTRs
may be utilized wherein one or more nucleotides are added or
removed to the termini, including A, T, C or G.

TABLE 2

5'-Untrangslated Regionsg

5' UTR Name/ SEQ

Identi- Descrip- ID

fier tion Sequence NO.

S5UTR-001 Upstream GGGAAATAAGAGAGAAAAGAAGAGTAA 1
UTR GAAGAAATATAAGAGCCACC

S5UTR-002 Upstream GGGAGATCAGAGAGAAAAGAAGAGTAA 2
UTR GAAGAAATATAAGAGCCACC

S5UTR-003 Upstream
UTR

GGAATAAAAGTCTCAACACAACATATAC 3
AAAACAAACGAATCTCAAGCAATCAAG
CATTCTACTTCTATTGCAGCAATTTAAAT
CATTTCTTTTAAAGCAAAAGCAATTTTCT
GAAAATTTTCACCATTTACGAACGATAG

CAAC
S5UTR-004 Upstream GGGAGACAAGCUUGGCAUUCCGGUACU 4
UTR GUUGGUAAAGCCACC

Shown in Table 3 is a representative listing of 3'-untrans-
lated regions of the invention. Variants of 3' UTRs may be
utilized wherein one or more nucleotides are added or
removed to the termini, including A, T, C or G.

TABLE 3

3'-Untranslated Regions

3' UTR SEQ
Identi- ID
fier Name/Description Sequence NO.
3UTR-001 Creatine Kinase GCGCCTGCCCACCTGCCACCGACTGCTG 5

GAACCCAGCCAGTGGGAGGGCCTGGCC

CACCAGAGTCCTGCTCCCTCACTCCTCG
CCCCGCCCCCTGTCCCAGAGTCCCACCT
GGGGGCTCTCTCCACCCTTCTCAGAGTT
CCAGTTTCAACCAGAGTTCCAACCAATG
GGCTCCATCCTCTGGATTCTGGCCAATG
AAATATCTCCCTGGCAGGGTCCTCTTCT
TTTCCCAGAGCTCCACCCCAACCAGGA
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TABLE 3-continued

3'-Untranslated Regions

3' UTR
Identi-
fier Name/Description

Sequence

SEQ

NO.

3UTR-002 Myoglobin

3UTR-003 a-actin

3UTR-004 Albumin

3UTR-005 a-globin

3UTR-006 G-CSF

GCTCTAGTTAATGGAGAGCTCCCAGCA
CACTCGGAGCTTGTGCTTTGTCTCCACG
CAAAGCGATAAATAAAAGCATTGGTGG
CCTTTGGTCTTTGAATAAAGCCTGAGTA
GGAAGTCTAGA

GCCCCTGCCGCTCCCACCCCCACCCATC
TGGGCCCCGGGTTCAAGAGAGAGCGGG
GTCTGATCTCGTGTAGCCATATAGAGTT
TGCTTCTGAGTGTCTGCTTTGTTTAGTA
GAGGTGGGCAGGAGGAGCTGAGGGGCT
GGGGCTGGGGTGTTGAAGTTGGCTTTGC
ATGCCCAGCGATGCGCCTCCCTGTGGG
ATGTCATCACCCTGGGAACCGGGAGTG
GCCCTTGGCTCACTGTGTTCTGCATGGT
TTGGATCTGAATTAATTGTCCTTTCTTCT
AAATCCCAACCGAACTTCTTCCAACCTC
CAAACTGGCTGTAACCCCAAATCCAAG
CCATTAACTACACCTGACAGTAGCAATT
GTCTGATTAATCACTGGCCCCTTGAAGA
CAGCAGAATGTCCCTTTGCAATGAGGA
GGAGATCTGGGCTGGGCGGGCCAGCTG
GGGAAGCATTTGACTATCTGGAACTTGT
GTGTGCCTCCTCAGGTATGGCAGTGACT
CACCTGGTTTTAATAAAACAACCTGCAA
CATCTCATGGTCTTTGAATAAAGCCTGA
GTAGGAAGTCTAGA

ACACACTCCACCTCCAGCACGCGACTTC
TCAGGACGACGAATCTTCTCAATGGGG
GGGCGGCTGAGCTCCAGCCACCCCGCA
GTCACTTTCTTTGTAACAACTTCCGTTG
CTGCCATCGTAAACTGACACAGTGTTTA
TAACGTGTACATACATTAACTTATTACC
TCATTTTGTTATTTTTCGAAACAAAGCC
CTGTGGAAGAAAATGGAAAACTTGAAG
AAGCATTAAAGTCATTCTGTTAAGCTGC
GTAAATGGTCTTTGAATAAAGCCTGAGT
AGGAAGTCTAGA

CATCACATTTAAAAGCATCTCAGCCTAC
CATGAGAATAAGAGAAAGAAAATGAA
GATCAAAAGCTTATTCATCTGTTTTTCT
TTTTCGTTGGTGTAAAGCCAACACCCTG
TCTAAAAAACATAAATTTCTTTAATCAT
TTTGCCTCTTTTCTCTGTGCTTCAATTAA
TAAAAAATGGAAAGAATCTAATAGAGT
GGTACAGCACTGTTATTTTTCAAAGATG
TGTTGCTATCCTGAAAATTCTGTAGGTT
CTGTGGAAGTTCCAGTGTTCTCTCTTAT
TCCACTTCGGTAGAGGATTTCTAGTTTC
TTGTGGGCTAATTAAATAAATCATTAAT
ACTCTTCTAATGGTCTTTGAATAAAGCC
TGAGTAGGAAGTCTAGA

GCTGCCTTCTGCGGGGCTTGCCTTCTGG
CCATGCCCTTCTTCTCTCCCTTGCACCTG
TACCTCTTGGTCTTTGAATAAAGCCTGA
GTAGGAAGGCGGCCGCTCGAGCATGCA
TCTAGA

GCCAAGCCCTCCCCATCCCATGTATTTA
TCTCTATTTAATATTTATGTCTATTTAAG
CCTCATATTTAAAGACAGGGAAGAGCA
GAACGGAGCCCCAGGCCTCTGTGTCCTT
CCCTGCATTTCTGAGTTTCATTCTCCTGC
CTGTAGCAGTGAGAAAAAGCTCCTGTC
CTCCCATCCCCTGGACTGGGAGGTAGAT
AGGTAAATACCAAGTATTTATTACTATG
ACTGCTCCCCAGCCCTGGCTCTGCAATG
GGCACTGGGATGAGCCGCTGTGAGCCC
CTGGTCCTGAGGGTCCCCACCTGGGACC
CTTGAGAGTATCAGGTCTCCCACGTGGG
AGACAAGAAATCCCTGTTTAATATTTAA
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TABLE 3-continued

3'-Untranslated Regions

3' UTR
Identi-

fier Name/Description

Sequence

SEQ

NO.

3UTR-007 Colla2; collagen,
type I alpha 2

3UTR-008 Coléa2; collagen,
type VI, alpha 2

3UTR-009 RPN1;

ribophorin I

ACAGCAGTGTTCCCCATCTGGGTCCTTG
CACCCCTCACTCTGGCCTCAGCCGACTG
CACAGCGGCCCCTGCATCCCCTTGGCTG
TGAGGCCCCTGGACAAGCAGAGGTGGC
CAGAGCTGGGAGGCATGGCCCTGGGGET
CCCACGAATTTGCTGGGGAATCTCGTTT
TTCTTCTTAAGACTTTTGGGACATGGTT
TGACTCCCGAACATCACCGACGCGTCTC
CTGTTTTTCTGGGTGGCCTCGGGACACC
TGCCCTGCCCCCACGAGGGTCAGGACT
GTGACTCTTTTTAGGGCCAGGCAGGTGC
CTGGACATTTGCCTTGCTGGACGGGGAC
TGGGGATGTGGGAGGGAGCAGACAGGA
GGAATCATGTCAGGCCTGTGTGTGAAA
GGAAGCTCCACTGTCACCCTCCACCTCT
TCACCCCCCACTCACCAGTGTCCCCTCC
ACTGTCACATTGTAACTGAACTTCAGGA
TAATAAAGTGTTTGCCTCCATGGTCTTT
GAATAAAGCCTGAGTAGGAAGGCGGCC
GCTCGAGCATGCATCTAGA

ACTCAATCTAAATTAAAAAAGAAAGAA
ATTTGAAAAAACTTTCTCTTTGCCATTT
CTTCTTCTTCTTTTTTAACTGAAAGCTGA
ATCCTTCCATTTCTTCTGCACATCTACTT
GCTTAAATTGTGGGCAAAAGAGAAAAA
GAAGGATTGATCAGAGCATTGTGCAAT
ACAGTTTCATTAACTCCTTCCCCCGCTC
CCCCAAAAATTTGAATTTTTTTTTCAAC
ACTCTTACACCTGTTATGGAAAATGTCA
ACCTTTGTAAGAAAACCAAAATAAARA
TTGAAAAATAAAAACCATAAACATTTG
CACCACTTGTGGCTTTTGAATATCTTCC
ACAGAGGGAAGTTTAAAACCCAAACTT
CCAAAGGTTTAAACTACCTCAAAACAC
TTTCCCATGAGTGTGATCCACATTGTTA
GGTGCTGACCTAGACAGAGATGAACTG
AGGTCCTTGTTTTGTTTTGTTCATAATAC
AAAGGTGCTAATTAATAGTATTTCAGAT
ACTTGAAGAATGTTGATGGTGCTAGAA
GAATTTGAGAAGAAATACTCCTGTATTG
AGTTGTATCGTGTGGTGTATTTTTTAAA
AAATTTGATTTAGCATTCATATTTTCCA
TCTTATTCCCAATTAAAAGTATGCAGAT
TATTTGCCCAAATCTTCTTCAGATTCAG
CATTTGTTCTTTGCCAGTCTCATTTTCAT
CTTCTTCCATGGTTCCACAGAAGCTTTG
TTTCTTGGGCAAGCAGAAAAATTAAATT
GTACCTATTTTGTATATGTGAGATGTTT
AAATAAATTGTGAAAAAAATGAAATAA
AGCATGTTTGGTTTTCCAAAAGAACATA
T

CGCCGCCGCCCGGGCCCCGCAGTCGAG
GGTCGTGAGCCCACCCCGTCCATGGTGC
TAAGCGGGCCCGGGTCCCACACGGCCA
GCACCGCTGCTCACTCGGACGACGCCCT
GGGCCTGCACCTCTCCAGCTCCTCCCAC
GGGGTCCCCGTAGCCCCGGCCCCCGLe
CAGCCCCAGGTCTCCCCAGGCCCTCCGC
AGGCTGCCCGGCCTCCCTCCCCCTGCAG
CCATCCCAAGGCTCCTGACCTACCTGGC
CCCTGAGCTCTGGAGCAAGCCCTGACC
CAATAAAGGCTTTGAACCCAT

GGGGCTAGAGCCCTCTCCGCACAGCGT
GGAGACGGGGCAAGGAGGGGGGTTATT
AGGATTGGTGGTTTTGTTTTGCTTTGTTT
AAAGCCGTGGGAAAATGGCACAACTTT
ACCTCTGTGGGAGATGCAACACTGAGA
GCCAAGGGGTGGGAGTTGGGATAATTT
TTATATAAAAGAAGTTTTTCCACTTTGA
ATTGCTAAAAGTGGCATTTTTCCTATGT
GCAGTCACTCCTCTCATTTCTAAAATAG

11

12

13

46



US 9,050,297 B2
47

TABLE 3-continued

3'-Untranslated Regions

3' UTR SEQ
Identi- ID
fier Name/Description Sequence NO.

GGACGTGGCCAGGCACGGTGGCTCATG
CCTGTAATCCCAGCACTTTGGGAGGCCG
AGGCAGGCGGCTCACGAGGTCAGGAGA
TCGAGACTATCCTGGCTAACACGGTAA
AACCCTGTCTCTACTAAAAGTACAAAA
AATTAGCTGGGCGTGGTGGTGGGCACC
TGTAGTCCCAGCTACTCGGGAGGCTGA
GGCAGGAGAAAGGCATGAATCCAAGAG
GCAGAGCTTGCAGTGAGCTGAGATCAC
GCCATTGCACTCCAGCCTGGGCAACAG
TGTTAAGACTCTGTCTCAAATATAAATA
AATAAATAAATAAATAAATAAATAAAT
AAAAATAAAGCGAGATGTTGCCCTCAA

A
3UTR-010LRP1; low density GGCCCTGCCCCGTCGGACTGCCCCCAG 14
lipoprotein receptor- AAAGCCTCCTGCCCCCTGCCAGTGAAGT
related protein 1 CCTTCAGTGAGCCCCTCCCCAGCCAGCC

CTTCCCTGGCCCCGCCGGATGTATAAAT
GTAAAAATGAAGGAATTACATTTTATAT
GTGAGCGAGCAAGCCGGCAAGCGAGCA
CAGTATTATTTCTCCATCCCCTCCCTGC
CTGCTCCTTGGCACCCCCATGCTGCCTT
CAGGGAGACAGGCAGGGAGGGCTTGGG
GCTGCACCTCCTACCCTCCCACCAGAAC
GCACCCCACTGGGAGAGCTGGTGGTGC
AGCCTTCCCCTCCCTGTATAAGACACTT
TGCCAAGGCTCTCCCCTCTCGCCCCATC
CCTGCTTGCCCGCTCCCACAGCTTCCTG
AGGGCTAATTCTGGGAAGGGAGAGTTC
TTTGCTGCCCCTGTCTGGAAGACGTGGC
TCTGGGTGAGGTAGGCGGGAAAGGATG
GAGTGTTTTAGTTCTTGGGGGAGGCCAC
CCCAAACCCCAGCCCCAACTCCAGGGG
CACCTATGAGATGGCCATGCTCAACCCC
CCTCCCAGACAGGCCCTCCCTGTCTCCA
GGGCCCCCACCGAGGTTCCCAGGGCTG
GAGACTTCCTCTGGTAAACATTCCTCCA
GCCTCCCCTCCCCTGGGGACGCCAAGG
AGGTGGGCCACACCCAGGAAGGGAAAG
CGGGCAGCCCCGTTTTGGGGACGTGAA
CGTTTTAATAATTTTTGCTGAATTCCTTT
ACAACTAAATAACACAGATATTGTTAT
AAATAAAATTGT

3UTR-011Nntl; cardiotrophin- ATATTAAGGATCAAGCTGTTAGCTAATA 15

like cytokine factor 1 ATGCCACCTCTGCAGTTTTGGGAACAGG
CAAATAAAGTATCAGTATACATGGTGA
TGTACATCTGTAGCAAAGCTCTTGGAGA
AAATGAAGACTGAAGAAAGCAAAGCA
AAAACTGTATAGAGAGATTTTTCAAAA
GCAGTAATCCCTCAATTTTAAAAAAGG
ATTGAAAATTCTAAATGTCTTTCTGTGC
ATATTTTTTGTGTTAGGAATCAAAAGTA
TTTTATAAAAGGAGAAAGAACAGCCTC
ATTTTAGATGTAGTCCTGTTGGATTTTTT
ATGCCTCCTCAGTAACCAGAAATGTTTT
AAAAAACTAAGTGTTTAGGATTTCAAG
ACAACATTATACATGGCTCTGAAATATC
TGACACAATGTAAACATTGCAGGCACC
TGCATTTTATGTTTTTTTTTTCAACAAAT
GTGACTAATTTGAAACTTTTATGAACTT
CTGAGCTGTCCCCTTGCAATTCAACCGC
AGTTTGAATTAATCATATCAAATCAGTT
TTAATTTTTTAAATTGTACTTCAGAGTC
TATATTTCAAGGGCACATTTTCTCACTA
CTATTTTAATACATTAAAGGACTAAATA
ATCTTTCAGAGATGCTGGAAACAAATC
ATTTGCTTTATATGTTTCATTAGAATAC
CAATGAAACATACAACTTGAAAATTAG
TAATAGTATTTTTGAAGATCCCATTTCT
AATTGGAGATCTCTTTAATTTCGATCAA
CTTATAATGTGTAGTACTATATTAAGTG
CACTTGAGTGGAATTCAACATTTGACTA
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TABLE 3-continued

3'-Untranslated Regions

3' UTR
Identi-
fier

Name/Description

Sequence

SEQ

NO.

ATAAAATGAGTTCATCATGTTGGCAAGT
GATGTGGCAATTATCTCTGGTGACAAA
AGAGTAAAATCAAATATTTCTGCCTGTT
ACAAATATCAAGGAAGACCTGCTACTA
TGAAATAGATGACATTAATCTGTCTTCA
CTGTTTATAATACGGATGGATTTTTTTT
CAAATCAGTGTGTGTTTTGAGGTCTTAT
GTAATTGATGACATTTGAGAGAAATGG
TGGCTTTTTTTAGCTACCTCTTTGTTCAT
TTAAGCACCAGTAAAGATCATGTCTTTT
TATAGAAGTGTAGATTTTCTTTGTGACT
TTGCTATCGTGCCTAAAGCTCTAAATAT
AGGTGAATGTGTGATGAATACTCAGAT
TATTTGTCTCTCTATATAATTAGTTTGGT
ACTAAGTTTCTCAAAAAATTATTAACAC
ATGAAAGACAATCTCTAAACCAGAAAA
AGAAGTAGTACAAATTTTGTTACTGTAA
TGCTCGCGTTTAGTGAGTTTAAAACACA
CAGTATCTTTTGGTTTTATAATCAGTTTC
TATTTTGCTGTGCCTGAGATTAAGATCT
GTGTATGTGTGTGTGTGTGTGTGTGCGT
TTGTGTGTTAAAGCAGAAAAGACTTTTT
TAAAAGTTTTAAGTGATAAATGCAATTT
GTTAATTGATCTTAGATCACTAGTAAAC
TCAGGGCTGAATTATACCATGTATATTC
TATTAGAAGAAAGTAAACACCATCTTT
ATTCCTGCCCTTTTTCTTCTCTCAAAGTA
GTTGTAGTTATATCTAGAAAGAAGCAA
TTTTGATTTCTTGAAAAGGTAGTTCCTG
CACTCAGTTTAAACTAAAAATAATCATA
CTTGGATTTTATTTATTTTTGTCATAGTA
AAAATTTTAATTTATATATATTTTTATTT
AGTATTATCTTATTCTTTGCTATTTGCCA
ATCCTTTGTCATCAATTGTGTTAAATGA
ATTGAAAATTCATGCCCTGTTCATTTTA
TTTTACTTTATTGGTTAGGATATTTAAA
GGATTTTTGTATATATAATTTCTTAAAT
TAATATTCCAAAAGGTTAGTGGACTTAG
ATTATAAATTATGGCAAAAATCTAAAA
ACAACAAAAATGATTTTTATACATTCTA
TTTCATTATTCCTCTTTTTCCAATAAGTC
ATACAATTGGTAGATATGACTTATTTTA
TTTTTGTATTATTCACTATATCTTTATGA
TATTTAAGTATAAATAATTAAAAAAATT
TATTGTACCTTATAGTCTGTCACCAAARA
AAAAAAAATTATCTGTAGGTAGTGAAA
TGCTAATGTTGATTTGTCTTTAAGGGCT
TGTTAACTATCCTTTATTTTCTCATTTGT
CTTAAATTAGGAGTTTGTGTTTAAATTA
CTCATCTAAGCAAAAAATGTATATAAA
TCCCATTACTGGGTATATACCCAAAGGA
TTATAAATCATGCTGCTATAAAGACACA
TGCACACGTATGTTTATTGCAGCACTAT
TCACAATAGCAAAGACTTGGAACCAAC
CCAAATGTCCATCAATGATAGACTTGAT
TAAGAAAATGTGCACATATACACCATG
GAATACTATGCAGCCATAAAAAAGGAT
GAGTTCATGTCCTTTGTAGGGACATGGA
TAAAGCTGGAAACCATCATTCTGAGCA
AACTATTGCAAGGACAGAAAACCAAAC
ACTGCATGTTCTCACTCATAGGTGGGAA
TTGAACAATGAGAACACTTGGACACAA
GGTGGGGAACACCACACACCAGGGCCT
GTCATGGGGTGGGGGGAGTGGGGAGGG
ATAGCATTAGGAGATATACCTAATGTA
AATGATGAGTTAATGGGTGCAGCACAC
CAACATGGCACATGTATACATATGTAG
CAAACCTGCACGTTGTGCACATGTACCC
TAGAACTTAAAGTATAATTAAAAAAAR
AAAGAAAACAGAAGCTATTTATAAAGA
AGTTATTTGCTGAAATAAATGTGATCTT
TCCCATTAAAAAAATAAAGAAATTTTG
GGGTAAAAAAACACAATATATTGTATT
CTTGAAAAATTCTAAGAGAGTGGATGT

50
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TABLE 3-continued

3'-Untranslated Regions

3' UTR
Identi-

fier Name/Description

SEQ

Sequence NO.

3UTR-012 Coléal;
type VI,

collagen,
alpha 1

3UTR-013 Calr; calreticulin

3UTR-014 Collal;
type I,

collagen,
alpha 1

GAAGTGTTCTCACCACAAAAGTGATAA
CTAATTGAGGTAATGCACATATTAATTA
GAAAGATTTTGTCATTCCACAATGTATA
TATACTTAAAAATATGTTATACACAATA
AATACATACATTAAAAAATAAGTAAAT
GTA

CCCACCCTGCACGCCGGCACCARACCC 16
TGTCCTCCCACCCCTCCCCACTCATCAC
TAAACAGAGTAAAATGTGATGCGAATT
TTCCCGACCAACCTGATTCGCTAGATTT
TTTTTAAGGAAAAGCTTGGAAAGCCAG
GACACAACGCTGCTGCCTGCTTTGTGCA
GGGTCCTCCGGGGCTCAGCCCTGAGTTG
GCATCACCTGCGCAGGGCCCTCTGGGG
CTCAGCCCTGAGCTAGTGTCACCTGCAC
AGGGCCCTCTGAGGCTCAGCCCTGAGC
TGGCGTCACCTGTGCAGGGCCCTCTGGG
GCTCAGCCCTGAGCTGGCCTCACCTGGG
TTCCCCACCCCGGGCTCTCCTGCCCTGC
CCTCCTGCCCGCCCTCCCTCCTGCCTGC
GCAGCTCCTTCCCTAGGCACCTCTGTGC
TGCATCCCACCAGCCTGAGCAAGACGC
CCTCTCGGGGCCTGTGCCGCACTAGCCT
CCCTCTCCTCTGTCCCCATAGCTGGTTTT
TCCCACCAATCCTCACCTAACAGTTACT
TTACAATTAAACTCAAAGCAAGCTCTTC
TCCTCAGCTTGGGGCAGCCATTGGCCTC
TGTCTCGTTTTGGGAAACCAAGGTCAGG
AGGCCGTTGCAGACATARATCTCGGCG
ACTCGGCCCCGTCTCCTGAGGGTCCTGC
TGGTGACCGGCCTGGACCTTGGCCCTAC
AGCCCTGGAGGCCGCTGCTGACCAGCA
CTGACCCCGACCTCAGAGAGTACTCGC
AGGGGCGCTGGCTGCACTCAAGACCCT
CGAGATTAACGGTGCTAACCCCGTCTGC
TCCTCCCTCCCGCAGAGACTGGGGCCTG
GACTGGACATGAGAGCCCCTTGGTGCC
ACAGAGGGCTGTGTCTTACTAGAAACA
ACGCAAACCTCTCCTTCCTCAGAATAGT
GATGTGTTCGACGTTTTATCAAAGGCCC
CCTTTCTATGTTCATGTTAGTTTTGCTCC
TTCTGTGTTTTTTTCTGAACCATATCCAT
GTTGCTGACTTTTCCAAATAAAGGTTTT
CACTCCTCTC

AGAGGCCTGCCTCCAGGGCTGGACTGA 17
GGCCTGAGCGCTCCTGCCGCAGAGCTG
GCCGCGCCAAATAATGTCTCTGTGAGA
CTCGAGAACTTTCATTTTTTTCCAGGCT
GGTTCGGATTTGGGGTGGATTTTGGTTT
TGTTCCCCTCCTCCACTCTCCCCCACCC
CCTCCCCGCCCTTTTTTTTTTTTTTTTTTA
AACTGGTATTTTATCTTTGATTCTCCTTC
AGCCCTCACCCCTGGTTCTCATCTTTCTT
GATCAACATCTTTTCTTGCCTCTGTCCC
CTTCTCTCATCTCTTAGCTCCCCTCCAAC
CTGGGGGGCAGTGGTGTGGAGAAGCCA
CAGGCCTGAGATTTCATCTGCTCTCCTT
CCTGGAGCCCAGAGGAGGGCAGCAGAA
GGGGGTGGTGTCTCCAACCCCCCAGCA
CTGAGGAAGAACGGGGCTCTTCTCATTT
CACCCCTCCCTTTCTCCCCTGCCCCCAG
GACTGGGCCACTTCTGGGTGGGGCAGT
GGGTCCCAGATTGGCTCACACTGAGAA
TGTAAGAACTACAAACAAAATTTCTATT
AAATTAAATTTTGTGTCTCC

CTCCCTCCATCCCAACCTGGCTCCCTCC 18
CACCCAACCAACTTTCCCCCCAACCCGG
AAACAGACAAGCAACCCAAACTGAACC
CCCTCAAAAGCCAAAALAATGGGAGACA
ATTTCACATGGACTTTGGAAAATATTTT
TTTCCTTTGCATTCATCTCTCAAACTTAG
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TABLE 3-continued

3'-Untranslated Regions

3' UTR
Identi-
fier

Name/Description

Sequence

SEQ

NO.

TTTTTATCTTTGACCAACCGAACATGAC
CAAAAACCAAAAGTGCATTCAACCTTA
CCAAAAAAADADADAAAAAAADAGAATA
AATAAATAACTTTTTAAAAAAGGAAGC
TTGGTCCACTTGCTTGAAGACCCATGCG
GGGGTAAGTCCCTTTCTGCCCGTTGGGC
TTATGAAACCCCAATGCTGCCCTTTCTG
CTCCTTTCTCCACACCCCCCTTGGGGCC
TCCCCTCCACTCCTTCCCAAATCTGTCT
CCCCAGAAGACACAGGAAACAATGTAT
TGTCTGCCCAGCAATCAAAGGCAATGC
TCAAACACCCAAGTGGCCCCCACCCTC
AGCCCGCTCCTGCCCGCCCAGCACCCCC
AGGCCCTGGGGGACCTGGGGTTCTCAG
ACTGCCAAAGAAGCCTTGCCATCTGGC
GCTCCCATGGCTCTTGCAACATCTCCCC
TTCGTTTTTGAGGGGGTCATGCCGGGGG
AGCCACCAGCCCCTCACTGGGTTCGGA
GGAGAGTCAGGAAGGGCCACGACAAR
GCAGAAACATCGGATTTGGGGAACGCG
TGTCAATCCCTTGTGCCGCAGGGCTGGG
CGGGAGAGACTGTTCTGTTCCTTGTGTA
ACTGTGTTGCTGAAAGACTACCTCGTTC
TTGTCTTGATGTGTCACCGGGGCAACTG
CCTGGGGGCGGGGATGGGGGCAGGGTG
GAAGCGGCTCCCCATTTTATACCAAAG
GTGCTACATCTATGTGATGGGTGGGGTG
GGGAGGGAATCACTGGTGCTATAGAAA
TTGAGATGCCCCCCCAGGCCAGCAAAT
GTTCCTTTTTGTTCAAAGTCTATTTTTAT

TCCTTGATATTTTTCTTTTTTTTTTTTTTT

TTTTGTGGATGGGGACTTGTGAATTTTT
CTAAAGGTGCTATTTAACATGGGAGGA
GAGCGTGTGCGGCTCCAGCCCAGCCCG
CTGCTCACTTTCCACCCTCTCTCCACCT
GCCTCTGGCTTCTCAGGCCTCTGCTCTC
CGACCTCTCTCCTCTGAAACCCTCCTCC
ACAGCTGCAGCCCATCCTCCCGGCTCCC
TCCTAGTCTGTCCTGCGTCCTCTGTCCC
CGGGTTTCAGAGACAACTTCCCAAAGC
ACAAAGCAGTTTTTCCCCCTAGGGGTGG
GAGGAAGCAAAAGACTCTGTACCTATT
TTGTATGTGTATAATAATTTGAGATGTT
TTTAATTATTTTGATTGCTGGAATAAAG
CATGTGGAAATGACCCAAACATAATCC
GCAGTGGCCTCCTAATTTCCTTCTTTGG
AGTTGGGGGAGGGGTAGACATGGGGAA
GGGGCTTTGGGGTGATGGGCTTGCCTTC
CATTCCTGCCCTTTCCCTCCCCACTATTC
TCTTCTAGATCCCTCCATAACCCCACTC
CCCTTTCTCTCACCCTTCTTATACCGCA
AACCTTTCTACTTCCTCTTTCATTTTCTA
TTCTTGCAATTTCCTTGCACCTTTTCCAA
ATCCTCTTCTCCCCTGCAATACCATACA
GGCAATCCACGTGCACAACACACACAC
ACACTCTTCACATCTGGGGTTCTCCAAA
CCTCATACCCACTCCCCTTCAAGCCCAT
CCACTCTCCACCCCCTGGATGCCCTGCA
CTTGGTGGCGGTGGGATGCTCATGGAT
ACTGGGAGGGTGAGGGGAGTGGAACCC
GTGAGGAGGACCTGGGGGCCTCTCCTT
GAACTGACATGAAGGGTCATCTGGCCT
CTGCTCCCTTCTCACCCACGCTGACCTC
CTGCCGAAGGAGCAACGCAACAGGAGA
GGGGTCTGCTGAGCCTGGCGAGGGTCT
GGGAGGGACCAGGAGGAAGGCGTGCTC
CCTGCTCGCTGTCCTGGCCCTGGGGGAG
TGAGGGAGACAGACACCTGGGAGAGCT
GTGGGGAAGGCACTCGCACCGTGCTCT
TGGGAAGGAAGGAGACCTGGCCCTGCT
CACCACGGACTGGGTGCCTCGACCTCCT
GAATCCCCAGAACACAACCCCCCTGGG
CTGGGGTGGTCTGGGGAACCATCCTGC
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TABLE 3-continued

3'-Untranslated Regions

3' UTR
Identi-
fier Name/Description

SEQ

Sequence NO.

3UTR-015Plodl; procollagen
lysine, 2-oxoglutarate
5-dioxygenase 1

3UTR-016 Nucbl; nucleobindin
1

3UTR-017 a-globin

CCCCGCCTCCCGCTTACTCCTTTTTAAG
CTT

TTGGCCAGGCCTGACCCTCTTGGACCTT 19
TCTTCTTTGCCGACAACCACTGCCCAGC
AGCCTCTGGGACCTCGGGGTCCCAGGG
AACCCAGTCCAGCCTCCTGGCTGTTGAC
TTCCCATTGCTCTTGGAGCCACCAATCA
AAGAGATTCAAAGAGATTCCTGCAGGC
CAGAGGCGGAACACACCTTTATGGCTG
GGGCTCTCCGTGGTGTTCTGGACCCAGC
CCCTGGAGACACCATTCACTTTTACTGC
TTTGTAGTGACTCGTGCTCTCCAACCTG
TCTTCCTGAAAAACCAAGGCCCCCTTCC
CCCACCTCTTCCATGGGGTGAGACTTGA
GCAGAACAGGGGCTTCCCCAAGTTGCC
CAGAAAGACTGTCTGGGTGAGAAGCCA
TGGCCAGAGCTTCTCCCAGGCACAGGT
GTTGCACCAGGGACTTCTGCTTCAAGTT
TTGGGGTAAAGACACCTGGATCAGACT
CCAAGGGCTGCCCTGAGTCTGGGACTTC
TGCCTCCATGGCTGGTCATGAGAGCAA
ACCGTAGTCCCCTGGAGACAGCGACTC
CAGAGAACCTCTTGGGAGACAGAAGAG
GCATCTGTGCACAGCTCGATCTTCTACT
TGCCTGTGGGGAGGGGAGTGACAGGTC
CACACACCACACTGGGTCACCCTGTCCT
GGATGCCTCTGAAGAGAGGGACAGACC
GTCAGAAACTGGAGAGTTTCTATTAAA
GGTCATTTAAACCA

TCCTCCGGGACCCCAGCCCTCAGGATTC 20
CTGATGCTCCAAGGCGACTGATGGGCG
CTGGATGAAGTGGCACAGTCAGCTTCC
CTGGGGGCTGGTGTCATGTTGGGCTCCT
GGGGCGGGGGCACGGCCTGGCATTTCA
CGCATTGCTGCCACCCCAGGTCCACCTG
TCTCCACTTTCACAGCCTCCAAGTCTGT
GGCTCTTCCCTTCTGTCCTCCGAGGGGC
TTGCCTTCTCTCGTGTCCAGTGAGGTGC
TCAGTGATCGGCTTAACTTAGAGAAGC
CCGCCCCCTCCCCTTCTCCGTCTGTCCC
AAGAGGGTCTGCTCTGAGCCTGCGTTCC
TAGGTGGCTCGGCCTCAGCTGCCTGGGT
TGTGGCCGCCCTAGCATCCTGTATGCCC
ACAGCTACTGGAATCCCCGCTGCTGCTC
CGGGCCAAGCTTCTGGTTGATTAATGAG
GGCATGGGGTGGTCCCTCAAGACCTTCC
CCTACCTTTTGTGGAACCAGTGATGCCT
CAAAGACAGTGTCCCCTCCACAGCTGG
GTGCCAGGGGCAGGGGATCCTCAGTAT
AGCCGGTGAACCCTGATACCAGGAGCC
TGGGCCTCCCTGAACCCCTGGCTTCCAG
CCATCTCATCGCCAGCCTCCTCCTGGAC
CTCTTGGCCCCCAGCCCCTTCCCCACAC
AGCCCCAGAAGGGTCCCAGAGCTGACC
CCACTCCAGGACCTAGGCCCAGCCCCTC
AGCCTCATCTGGAGCCCCTGAAGACCA
GTCCCACCCACCTTTCTGGCCTCATCTG
ACACTGCTCCGCATCCTGCTGTGTGTCC
TGTTCCATGTTCCGGTTCCATCCAAATA
CACTTTCTGGAACAAA

GCTGGAGCCTCGGTGGCCATGCTTCTTG 21
CCCCTTGGGCCTCCCCCCAGCCCCTCCT
CCCCTTCCTGCACCCGTACCCCCGTGGT
CTTTGAATAAAGTCTGAGTGGGCGGC

It should be understood that those listed in the previous type UTRs of any known gene may be utilized. It is also
tables are examples and that any UTR from any gene may be . within the scope of the present invention to provide artificial
incorporated into the respective first or second flanking UTRs which are not variants of wild type genes. These UTRs
region of the primary construct. Furthermore, multiple wild- or portions thereof may be placed in the same orientation as in
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the transcript from which they were selected or may be altered
in orientation or location. Hence a 5' or 3' UTR may be
inverted, shortened, lengthened, made chimeric with one or
more other 5' UTRs or 3' UTRs. As used herein, the term
“altered” as it relates to a UTR sequence, means that the UTR
has been changed in some way in relation to a reference
sequence. For example, a 3' or 5' UTR may be altered relative
to a wild type or native UTR by the change in orientation or
location as taught above or may be altered by the inclusion of
additional nucleotides, deletion of nucleotides, swapping or
transposition of nucleotides. Any of these changes producing
an “altered” UTR (whether 3' or 5') comprise a variant UTR.

In one embodiment, a double, triple or quadruple UTR
such as a 5'or 3' UTR may be used. As used herein, a “double”
UTR is one in which two copies of the same UTR are encoded
either in series or substantially in series. For example, a
double beta-globin 3' UTR may be used as described in US
Patent publication 20100129877, the contents of which are
incorporated herein by reference in its entirety.

It is also within the scope of the present invention to have
patterned UTRs. As used herein “patterned UTRs” are those
UTRs which reflect a repeating or alternating pattern, such as
ABABAB or AABBAABBAABB or ABCABCABC or vari-
ants thereof repeated once, twice, or more than 3 times. In
these patterns, each letter, A, B, or C represent a different
UTR at the nucleotide level.

In one embodiment, flanking regions are selected from a
family of transcripts whose proteins share a common func-
tion, structure, feature of property. For example, polypeptides
of interest may belong to a family of proteins which are
expressed in a particular cell, tissue or at some time during
development. The UTRs from any of these genes may be
swapped for any other UTR of the same or different family of
proteins to create a new chimeric primary transcript. As used
herein, a “family of proteins” is used in the broadest sense to
refer to a group of two or more polypeptides of interest which
share at least one function, structure, feature, localization,
origin, or expression pattern.

After optimization (if desired), the primary construct com-
ponents are reconstituted and transformed into a vector such
as, but not limited to, plasmids, viruses, cosmids, and artifi-
cial chromosomes. For example, the optimized construct may
be reconstituted and transformed into chemically competent
E. coli, yeast, neurospora, maize, drosophila, etc. where high
copy plasmid-like or chromosome structures occur by meth-
ods described herein.

The untranslated region may also include translation
enhancer elements (TEE). As a non-limiting example, the
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TEE may include those described in US Application No.
20090226470, herein incorporated by reference in its
entirety, and those known in the art.
Stop Codons

In one embodiment, the primary constructs of the present
invention may include at least two stop codons before the 3'
untranslated region (UTR). The stop codon may be selected
from TGA, TAA and TAG. In one embodiment, the primary
constructs of the present invention include the stop codon
TGA and one additional stop codon. In a further embodiment
the addition stop codon may be TAA. In another embodiment,
the primary constructs of the present invention include three
stop codons.
Vector Amplification

The vector containing the primary construct is then ampli-
fied and the plasmid isolated and purified using methods
known in the art such as, but not limited to, a maxi prep using
the Invitrogen PURELINK™ HiPure Maxiprep Kit (Carls-
bad, Calif.).
Plasmid Linearization

The plasmid may then be linearized using methods known
in the art such as, but not limited to, the use of restriction
enzymes and buffers. The linearization reaction may be puri-
fied using methods including, for example Invitrogen’s
PURELINK™ PCR Micro Kit (Carlsbad, Calif.), and HPL.C
based purification methods such as, but not limited to, strong
anion exchange HPL.C, weak anion exchange HPL.C, reverse
phase HPLC (RP-HPLC), and hydrophobic interaction
HPLC  (HIC-HPLC) and Invitrogen’s  standard
PURELINK™ PCR Kit (Carlsbad, Calif.). The purification
method may be modified depending on the size of the linear-
ization reaction which was conducted. The linearized plasmid
is then used to generate cDNA for in vitro transcription (IVT)
reactions.
cDNA Template Synthesis

A cDNA template may be synthesized by having a linear-
ized plasmid undergo polymerase chain reaction (PCR).
Table 4 is a listing of primers and probes that may be usefully
in the PCR reactions of the present invention. It should be
understood that the listing is not exhaustive and that primer-
probe design for any amplification is within the skill of those
in the art. Probes may also contain chemically modified bases
to increase base-pairing fidelity to the target molecule and
base-pairing strength. Such modifications may include 5-me-
thyl-Cytidine, 2,6-di-amino-purine, 2'-fluoro, phosphoro-
thioate, or locked nucleic acids.

TABLE 4

Primers and Probes

Primer/

Probe SEQ

Identi- Hybridization ID

fier Sequence (5'-3') target NO.

UFP TTGGACCCTCGTACAGAAGCTAA cDNA Template 22
TACG

URP T,160CTTCCTACTCAGGCTTTATTC cDNA Template 23
AAAGACCA

GBAl CCTTGACCTTCTGGAACTTC Acid 24

glucocerebrosidase
GBA2 CCAAGCACTGAAACGGATAT Acid 25

glucocerebrosidase
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TABLE 4-continued

60

Primers and Probes

Primer/

Probe SEQ
Identi- Hybridization ID
fier Sequence (5'-3') target NO.
LUC1 GATGAAAAGTGCTCCAAGGA Luciferase 26
Luc2 AACCGTGATGAAAAGGTACC Luciferase 27
LUC3 TCATGCAGATTGGAAAGGTC Luciferase 28
GCSF1 CTTCTTGGACTGTCCAGAGG G-CSF 29
GCSF2 GCAGTCCCTGATACAAGAAC G-CSF 30
GCSF3 GATTGAAGGTGGCTCGCTAC G-CSF 31

*UFP is universal forward primer; URP is universal reverse primer.

In one embodiment, the ¢cDNA may be submitted for 20 H523L, H524N, G542V, E565K, K577E, K577M, N601S,

sequencing analysis before undergoing transcription.
mRNA Production

The process of mRNA or mmRNA production may
include, but is not limited to, in vitro transcription, cDNA
template removal and RNA clean-up, and mRNA capping
and/or tailing reactions.

In Vitro Transcription

The ¢cDNA produced in the previous step may be tran-
scribed using an in vitro transcription (IVT) system. The
system typically comprises a transcription buffer, nucleotide
triphosphates (NTPs), an RNase inhibitor and a polymerase.
The NTPs may be manufactured in house, may be selected
from a supplier, or may be synthesized as described herein.
The NTPs may be selected from, but are not limited to, those
described herein including natural and unnatural (modified)
NTPs. The polymerase may be selected from, but is not
limited to, T7 RNA polymerase, T3 RNA polymerase and
mutant polymerases such as, but not limited to, polymerases
able to incorporate modified nucleic acids.

RNA Polymerases

Any number of RNA polymerases or variants may be used
in the design of the primary constructs of the present inven-
tion.

RNA polymerases may be modified by inserting or delet-
ing amino acids of the RNA polymerase sequence. As a
non-limiting example, the RNA polymerase may be modified
to exhibit an increased ability to incorporate a 2'-modified
nucleotide triphosphate compared to an unmodified RNA
polymerase (see International Publication W02008078180
and U.S. Pat. No. 8,101,385; herein incorporated by reference
in their entireties).

Variants may be obtained by evolving an RNA polymerase,
optimizing the RNA polymerase amino acid and/or nucleic
acid sequence and/or by using other methods known in the art.
As a non-limiting example, T7 RNA polymerase variants
may be evolved using the continuous directed evolution sys-
tem set out by Esvelt et al. (Nature (2011) 472(7344):499-
503; herein incorporated by reference in its entirety) where
clones of T7 RNA polymerase may encode at least one muta-
tion such as, but not limited to, lysine at position 93 substi-
tuted for threonine (K93T), 14M, A7T, E63V, V64D, A65E,
D66Y, T76N, C125R, S128R, A136T, N165S, G175R,
H176L, Y178H, F182L, L196F, G198V, D208Y, E222K,
S228A, Q239R, T243N, G259D, M2671, G280C, H300R,
D351A, A354S, E356D, L360P, A383V, Y385C, D388Y,
S397R, M401T, N410S, K450R, P451T, G452V, E484A,
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S684Y, L6991, K713E, N748D, Q754R, E775K, A827V,
D851N or L.864F. As another non-limiting example, T7 RNA
polymerase variants may encode at least mutation as
described in U.S. Pub. Nos. 20100120024 and 20070117112,
herein incorporated by reference in their entireties. Variants
of RNA polymerase may also include, but are not limited to,
substitutional variants, conservative amino acid substitution,
insertional variants, deletional variants and/or covalent
derivatives.

Inone embodiment, the primary construct may be designed
to be recognized by the wild type or variant RNA poly-
merases. In doing so, the primary construct may be modified
to contain sites or regions of sequence changes from the wild
type or parent primary construct.

Inone embodiment, the primary construct may be designed
to include at least one substitution and/or insertion upstream
of an RNA polymerase binding or recognition site, down-
stream of the RNA polymerase binding or recognition site,
upstream of the TATA box sequence, downstream of the
TATA box sequence of the primary construct but upstream of
the coding region of the primary construct, within the S'UTR,
before the S'UTR and/or after the S'UTR.

In one embodiment, the S'UTR of the primary construct
may be replaced by the insertion of at least one region and/or
string of nucleotides of the same base. The region and/or
string of nucleotides may include, but is not limited to, at least
3, at least 4, at least 5, at least 6, at least 7 or at least 8
nucleotides and the nucleotides may be natural and/or
unnatural. As a non-limiting example, the group of nucle-
otides may include 5-8 adenine, cytosine, thymine, a string of
any of the other nucleotides disclosed herein and/or combi-
nations thereof.

In one embodiment, the S'UTR of the primary construct
may be replaced by the insertion of at least two regions and/or
strings of nucleotides of two different bases such as, but not
limited to, adenine, cytosine, thymine, any of the other nucle-
otides disclosed herein and/or combinations thereof. For
example, the 5S'UTR may be replaced by inserting 5-8 adenine
bases followed by the insertion of 5-8 cytosine bases. In
another example, the 5'UTR may be replaced by inserting 5-8
cytosine bases followed by the insertion of 5-8 adenine bases.

In one embodiment, the primary construct may include at
least one substitution and/or insertion downstream of the
transcription start site which may be recognized by an RNA
polymerase. As a non-limiting example, at least one substi-
tution and/or insertion may occur downstream the transcrip-
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tion start site by substituting at least one nucleic acid in the
region just downstream of the transcription start site (such as,
but not limited to, +1 to +6). Changes to region of nucleotides
just downstream of the transcription start site may affect
initiation rates, increase apparent nucleotide triphosphate
(NTP) reaction constant values, and increase the dissociation
of short transcripts from the transcription complex curing
initial transcription (Brieba et al, Biochemistry (2002) 41:
5144-5149; herein incorporated by reference in its entirety).
The modification, substitution and/or insertion of at least one
nucleic acid may cause a silent mutation of the nucleic acid
sequence or may cause a mutation in the amino acid
sequence.

In one embodiment, the primary construct may include the
substitution of at least 1, at least 2, at least 3, at least 4, at least
5, atleast 6, at least 7, at least 8, at least 9, at least 10, at least
11, at least 12 or at least 13 guanine bases downstream of the
transcription start site.

In one embodiment, the primary construct may include the
substitution of at least 1, at least 2, at least 3, at least 4, at least
5 or at least 6 guanine bases in the region just downstream of
the transcription start site. As a non-limiting example, if the
nucleotides in the region are GGGAGA the guanine bases
may be substituted by atleast 1, at least 2, at least 3 or at least
4 adenine nucleotides. In another non-limiting example, if the
nucleotides in the region are GGGAGA the guanine bases
may be substituted by atleast 1, at least 2, at least 3 or at least
4 cytosine bases. In another non-limiting example, if the
nucleotides in the region are GGGAGA the guanine bases
may be substituted by atleast 1, at least 2, at least 3 or at least
4 thymine, and/or any of the nucleotides described herein.

In one embodiment, the primary construct may include at
least one substitution and/or insertion upstream of the start
codon. For the purpose of clarity, one of skill in the art would
appreciate that the start codon is the first codon of the protein
coding region whereas the transcription start site is the site
where transcription begins. The primary construct may
include, but is not limited to, at least 1, at least 2, at least 3, at
least 4, at least 5, at least 6, at least 7 or at least 8 substitutions
and/or insertions of nucleotide bases. The nucleotide bases
may be inserted or substituted at 1, atleast 1, at least 2, at least
3, at least 4 or at least 5 locations upstream of the start codon.
The nucleotides inserted and/or substituted may be the same
base (e.g.,all A orall C or all T or all G), two different bases
(e.g.,Aand C,A and T, or C and T), three different bases (e.g.,
A,CandTor A, CandT) or at least four different bases. As
a non-limiting example, the guanine base upstream of the
coding region in the primary construct may be substituted
with adenine, cytosine, thymine, or any of the nucleotides
described herein. In another non-limiting example the substi-
tution of guanine bases in the primary construct may be
designed so as to leave one guanine base in the region down-
stream of the transcription start site and before the start codon
(see Esvelt et al. Nature (2011) 472(7344):499-503; herein
incorporated by reference in its entirety). As a non-limiting
example, at least 5 nucleotides may be inserted at 1 location
downstream of the transcription start site but upstream of the
start codon and the at least 5 nucleotides may be the same base
type.
c¢DNA Template Removal and Clean-Up

The cDNA template may be removed using methods
known in the art such as, but not limited to, treatment with
Deoxyribonuclease I (DNase I). RNA clean-up may also
include a purification method such as, but not limited to,
AGENCOURT® CLEANSEQ® system from Beckman
Coulter (Danvers, Mass.), HPL.C based purification methods
such as, but not limited to, strong anion exchange HPLC,
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weak anion exchange HPLC, reverse phase HPLC (RP-
HPLC), and hydrophobic interaction HPL.C (HIC-HPLC).
Capping and/or Tailing Reactions

The primary construct or mmRNA may also undergo cap-
ping and/or tailing reactions. A capping reaction may be
performed by methods known in the art to add a 5' cap to the
5'end of the primary construct. Methods for capping include,
but are not limited to, using a Vaccinia Capping enzyme (New
England Biolabs, Ipswich, Mass.).

A poly-A tailing reaction may be performed by methods
known in the art, such as, but not limited to, 2' O-methyltrans-
ferase and by methods as described herein. If the primary
construct generated from cDNA does not include a poly-T, it
may be beneficial to perform the poly-A-tailing reaction
before the primary construct is cleaned.
mRNA Purification

Primary construct or mmRNA purification may include,
but is not limited to, mRNA or mmRNA clean-up, quality
assurance and quality control. mRNA or mmRNA clean-up
may be performed by methods known in the arts such as, but
not limited to, AGENCOURT® beads (Beckman Coulter
Genomics, Danvers, Mass.), poly-T beads, LNA™ oligo-T
capture probes (EXIQON® Inc, Vedbaek, Denmark) or
HPLC based purification methods such as, but not limited to,
strong anion exchange HPLC, weak anion exchange HPLC,
reverse phase HPL.C (RP-HPLC), and hydrophobic interac-
tion HPLC (HIC-HPLC). The term “purified” when used in
relation to a polynucleotide such as a “purified mRNA or
mmRNA” refers to one that is separated from at least one
contaminant. As used herein, a “contaminant” is any sub-
stance which makes another unfit, impure or inferior. Thus, a
purified polynucleotide (e.g., DNA and RNA) is present in a
form or setting different from that in which it is found in
nature, or a form or setting different from that which existed
prior to subjecting it to a treatment or purification method.

A quality assurance and/or quality control check may be
conducted using methods such as, but not limited to, gel
electrophoresis, UV absorbance, or analytical HPLC.

In another embodiment, the mRNA or mmRNA may be
sequenced by methods including, but not limited to reverse-
transcriptase-PCR.

In one embodiment, the mRNA or mmRNA may be quan-
tified using methods such as, but not limited to, ultraviolet
visible spectroscopy (UV/Vis). A non-limiting example of a
UV/Vis spectrometer is a NANODROP® spectrometer
(ThermoFisher, Waltham, Mass.). The quantified mRNA or
mmRNA may be analyzed in order to determine if the mRNA
or mmRNA may be of proper size, check that no degradation
of the mRNA or mmRNA has occurred. Degradation of the
mRNA and/or mmRNA may be checked by methods such as,
but not limited to, agarose gel electrophoresis, HPLC based
purification methods such as, but not limited to, strong anion
exchange HPL.C, weak anion exchange HPLC, reverse phase
HPLC (RP-HPLC), and hydrophobic interaction HPLC
(HIC-HPLC), liquid chromatography-mass spectrometry
(LCMS), capillary electrophoresis (CE) and capillary gel
electrophoresis (CGE).

Signal Sequences

The primary constructs or mmRNA may also encode addi-
tional features which facilitate trafficking of the polypeptides
to therapeutically relevant sites. One such feature which aids
in protein trafficking is the signal sequence. As used herein, a
“signal sequence” or “signal peptide” is a polynucleotide or
polypeptide, respectively, which is from about 9 to 200 nucle-
otides (3-60 amino acids) in length which is incorporated at
the 5' (or N-terminus) of the coding region or polypeptide
encoded, respectively. Addition of these sequences result in
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trafficking of the encoded polypeptide to the endoplasmic Table 5 is a representative listing of protein signal
reticulum through one or more secretory pathways. Some sequences which may be incorporated for encoding by the
signal peptides are cleaved from the protein by signal pepti- polynucleotides, primary constructs or mmRNA of the inven-
dase after the proteins are transported. tion.
TABLE 5

Signal Seguences

NUCLEOTIDE SEQ SEQ
SEQUENCE iD ENCODED iD
iD Description (5'-3") NO. PEPTIDE NO.
SS-001 a-1- ATGATGCCATCCTCAGTCTC 32 MMPSSVSW 94
antitrypsin ATGGGGTATTTTGCTCTTGG GILLAGLCCL
CGGGTCTGTGCTGTCTCGTG VPVSLA
CCGGTGTCGCTCGCA
SS-002 G-CSF ATGGCCGGACCGGCGACTC 33 MAGPATQSP 95
AGTCGCCCATGAAACTCAT MKLMALQL
GGCCCTGCAGTTGTTGCTTT LLWHSALW
GGCACTCAGCCCTCTGGACC TVQEA
GTCCAAGAGGCG
SS-003 Factor IX ATGCAGAGAGTGAACATGA 34 MQRVNMIM 96
TTATGGCCGAGTCCCCATCG AESPSLITICL
CTCATCACAATCTGCCTGCT LGYLLSAEC
TGGTACCTGCTTTCCGCCGA TVFLDHENA
ATGCACTGTCTTTCTGGATC NKILNRPKR
ACGAGAATGCGAATAAGAT
CTTGAACCGACCCAAACGG
$S-004 Prolactin ATGAAAGGATCATTGCTGTT 35 MKGSLLLLL 97
GCTCCTCGTGTCGAACCTTC VSNLLLCQS
TGCTTTGCCAGTCCGTAGCC VAP
cce
S$S-005 Albumin ATGAAATGGGTGACGTTCA 36 MKWVTFISL 98
TCTCACTGTTGTTTTTGTTCT LFLFSSAYSR
CGTCCGCCTACTCCAGGGG G VFRR
AGTATTCCGCCGA
SS-006 HMMSP38 ATGTGGTGGCGGCTCTGGTG 37 MWWRLWW 99
GCTGCTCCTGTTGCTCCTCT LLLLLLLLP
TGCTGTGGCCCATGGTGTGG MWA
GCA
MLS-001 ornithine TGCTCTTTAACCTCCGCATC 38 MLFNLRILL 100
carbamoyl- CTGTTGAATAACGCTGCGTT NNAAFRNGH
transferase CCGAAATGGGCATAACTTC NEFMVRNFRC
ATGGTACGCAACTTCAGAT GQPLQ
GCGGCCAGCCACTCCAG
MLS-002 Cytochrome C ATGTCCGTCTTGACACCCCT 39 MSVLTPLLL 101
Oxidase GCTCTTGAGAGGGCTGACG RGLTGSARR
subunit 824 GGGTCCGCTAGACGCCTGC LPVPRAKIHS
CGGTACCGCGAGCGAAGAT L
CCACTCCCTG
MLS-003 Cytochrome C ATGAGCGTGCTCACTCCGTT 40 MSVLTPLLL 102
Oxidase GCTTCTTCGAGGGCTTACGG RGLTGSARR
subunit 824 GATCGGCTCGGAGGTTGCC LPVPRAKIHS
CGTCCCGAGAGCGAAGATC L
CATTCGTTG
SS-007 Type III, TGACAAAAATAACTTTATCT 41 MVTKITLSP 103
bacterial CCCCAGAATTTTAGAATCCA ONFRIQKQE
AAAACAGGAAACCACACTA TTLLKEKSTE
CTAAAAGAAARAATCAACCG KNSLAKSILA
AGAAAAATTCTTTAGCAAA VKNHFIELRS
AAGTATTCTCGCAGTAAAA KLSERFISHK
ATCACTTCATCGAATTAAGG NT
TCAAAATTATCGGAACGTTT
TATTTCGCATAAGAACACT
$8-008 Viral ATGCTGAGCTTTGTGGATAC 42 MLSFVDTRT 104
CCGCACCCTGCTGCTGCTGG LLLLAVTSC
CGGTGACCAGCTGCCTGGC LATCQ

GACCTGCCAG
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TABLE 5-continued

Signal Seguences

NUCLEOTIDE SEQ SEQ
SEQUENCE iD ENCODED iD
iD Description (5'-3") NO. PEPTIDE NO.
$5-009 viral ATGGGCAGCAGCCAGGCGC 43 MGSSQAPRM 105
CGCGCATGGGCAGCGTGGG GSVGGHGL
CGGCCATGGCCTGATGGCG MALLMAGLI
CTGCTGATGGCGGGCCTGAT LPGILA
TCTGCCGGGCATTCTGGCG
$S-010 Viral ATGGCGGGCATTTTTTATTT 44 MAGIFYFLFS 106
TCTGTTTAGCTTTCTGTTTG FLFGICD
GCATTTGCGAT
$S-011 Viral ATGGAAAACCGCCTGCTGC 45 MENRLLRVF 107
GCGTGTTTCTGGTGTGGGCG LVWAALTM
GCGCTGACCATGGATGGCG DGASA
CGAGCGCG
$S-012 Viral ATGGCGCGCCAGGGCTGCT 46 MARQGCFGS 108
TTGGCAGCTATCAGGTGATT YQVISLFTFA
AGCCTGTTTACCTTTGCGAT IGVNLCLG
TGGCGTGAACCTGTGCCTGG
GC
S$S-013 Bacillus ATGAGCCGCCTGCCGGTGCT 47 MSRLPVLLL 109
GCTGCTGCTGCAGCTGCTGG LQLLVRPGL
TGCGCCCGGGCCTGCAG Q
S$S-014 Bacillus ATGAAACAGCAGAAACGCC 48 MKQQKRLY 110
TGTATGCGCGCCTGCTGACC ARLLTLLFA
CTGCTGTTTGCGCTGATTTT LIFLLPHSSA
TCTGCTGCCGCATAGCAGCG SA
CGAGCGCG
SS-015 Secretion ATGGCGACGCCGCTGCCTCC 49 MATPLPPPSP 111
signal GCCCTCCCCGCGGCACCTGC RHLRLLRLL
GGCTGCTGCGGCTGCTGCTC LSG
TCCGCCCTCGTCCTCGGC
SS-016 Secretion ATGAAGGCTCCGGGTCGGC 50 MKAPGRLVL 112
signal TCGTGCTCATCATCCTGTGC IILCSVVFS
TCCGTGGTCTTCTCT
SS-017 Secretion ATGCTTCAGCTTTGGAAACT 51 MLQLWKLL 113
signal TGTTCTCCTGTGCGGCGTGC CGVLT
TCACT
SS-018 Secretion ATGCTTTATCTCCAGGGTTG 52 MLYLQGWS 114
signal GAGCATGCCTGCTGTGGCA MPAVA
SS-019 Secretion ATGGATAACGTGCAGCCGA 53 MDNVQPKIK 115
signal AAATAAAACATCGCCCCTTC HRPFCFSVK
TGCTTCAGTGTGAAAGGCC GHVKMLRL
ACGTGAAGATGCTGCGGCT DIINSLVTTV
GGATATTATCAACTCACTGG FMLIVSVLA
TAACAACAGTATTCATGCTC LIP
ATCGTATCTGTGTTGGCACT
GATACCA
SS-020 Secretion ATGCCCTGCCTAGACCAAC 54 MPCLDQQLT 116
signal AGCTCACTGTTCATGCCCTA VHALPCPAQ
CCCTGCCCTGCCCAGCCCTC PSSLAFCQV
CTCTCTGGCCTTCTGCCAAG GFLTA
TGGGGTTCTTAACAGCA
SS-021 Secretion ATGAAAACCTTGTTCAATCC 55 MKTLENPAP 117
signal AGCCCCTGCCATTGCTGACC AIADLDPQF
TGGATCCCCAGTTCTACACC YTLSDVFCC
CTCTCAGATGTGTTCTGCTG NESEAEILTG
CAATGAAAGTGAGGCTGAG LTVGSAADA
ATTTTAACTGGCCTCACGGT
GGGCAGCGCTGCAGATGCT
SS-022 Secretion ATGAAGCCTCTCCTTGTTGT 56 MKPLLVVFV 118
signal GTTTGTCTTTCTTTTCCTTTG FLFLWDPVL
GGATCCAGTGCTGGCA A
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TABLE 5-continued

Signal Seguences

NUCLEOTIDE SEQ SEQ
SEQUENCE iD ENCODED iD
iD Description (5'-3") NO. PEPTIDE NO.
SS-023 Secretion ATGTCCTGTTCCCTAAAGTT 57 MSCSLKFTLI 119
signal TACTTTGATTGTAATTTTTTT VIFFTCTLSS
TTACTGTTGGCTTTCATCCA S
GC
SS-024 Secretion ATGGTTCTTACTAAACCTCT 58 MVLTKPLQR 120
signal TCAAAGAAATGGCAGCATG NGSMMSFEN
ATGAGCTTTGAAAATGTGA VKEKSREGG
AAGAAAAGAGCAGAGAAG PHAHTPEEE
GAGGGCCCCATGCACACAC LCFVVTHTP
ACCCGAAGAAGAATTGTGT QVQTTLNLF
TTCGTGGTAACACACTACCC FHIFKVLTQP
TCAGGTTCAGACCACACTCA LSLLWG
ACCTGTTTTTCCATATATTC
AAGGTTCTTACTCAACCACT
TTCCCTTCTGTGGGGT
SS-025 Secretion ATGGCCACCCCGCCATTCCG 59 MATPPFRLIR 121
signal GCTGATAAGGAAGATGTTTT KMFSFKVSR
CCTTCAAGGTGAGCAGATG WMGLACFR
GATGGGGCTTGCCTGCTTCC SLAAS
GGTCCCTGGCGGCATCC
SS-026 Secretion ATGAGCTTTTTCCAACTCCT 60 MSFFQLLMK 122
signal GATGAAAAGGAAGGAACTC RKELIPLVVF
ATTCCCTTGGTGGTGTTCAT MTVAAGGA
GACTGTGGCGGCGGGTGGA Ss
GCCTCATCT
SS-027 Secretion ATGGTCTCAGCTCTGCGGGG 61 MVSALRGAP 123
signal AGCACCCCTGATCAGGGTG LIRVHSSPVS
CACTCAAGCCCTGTTTCTTC SPSVSGPAAL
TCCTTCTGTGAGTGGACCAC VSCLSSQSSA
GGAGGCTGGTGAGCTGCCT LS
GTCATCCCAAAGCTCAGCTC
TGAGC
SS-028 Secretion ATGATGGGGTCCCCAGTGA 62 MMGSPVSHL 124
signal GTCATCTGCTGGCCGGCTTC LAGFCVWV
TGTGTGTGGGTCGTCTTGGG VLG
o
SS-029 Secretion ATGGCAAGCATGGCTGCCG 63 MASMAAVL 125
signal TGCTCACCTGGGCTCTGGCT TWALALLSA
CTTCTTTCAGCGTTTTCGGC FSATQA
CACCCAGGCA
SS-030 Secretion ATGGTGCTCATGTGGACCA 64 MVLMWTSG 126
signal GTGGTGACGCCTTCAAGAC DAFKTAYFL
GGCCTACTTCCTGCTGAAGG LKGAPLQFS
GTGCCCCTCTGCAGTTCTCC VCGLLQVLV
GTGTGCGGCCTGCTGCAGGT DLAILGQAT
GCTGGTGGACCTGGCCATCC A
TGGGGCAGGCCTACGCC
SS-031 Secretion ATGGATTTTGTCGCTGGAGC 65 MDFVAGAIG 127
signal CATCGGAGGCGTCTGCGGT GVCGVAVG
GTTGCTGTGGGCTACCCCCT YPLDTVKVR
GGACACGGTGAAGGTCAGG IQTEPLYTGI
ATCCAGACGGAGCCAAAGT WHCVRDTY
ACACAGGCATCTGGCACTG HRERVWGF
CGTCCGGGATACGTATCACC YRGLSLPVC
GAGAGCGCGTGTGGG TVSLVSS
GCTTCTACCGGGGCCTCTCG
CTGCCCGTGTGCACGGTGTC
CCTGGTATCTTCC
SS-032 Secretion ATGGAGAAGCCCCTCTTCCC 66 MEKPLFPLV 128
signal ATTAGTGCCTTTGCATTGGT PLHWFGFGY
TTGGCTTTGGCTACACAGCA TALVVSGGI
CTGGTTGTTTCTGGTGGGAT VGYVKTGSV
CGTTGGCTATGTAAAAACA PSLAAGLLF
GGCAGCGTGCCGTCCCTGG GSLA
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TABLE 5-continued

Signal Seguences

NUCLEOTIDE SEQ SEQ
SEQUENCE iD ENCODED iD
iD Description (5'-3") NO. PEPTIDE NO.
CTGCAGGGCTGCTCTTCGGC
AGTCTAGCC
SS-033 Secretion ATGGGTCTGCTCCTTCCCCT 67 MGLLLPLAL 129
signal GGCACTCTGCATCCTAGTCC CILVLC
TGTGC
SS-034 Secretion ATGGGGATCCAGACGAGCC 68 MGIQTSPVL 130
signal CCGTCCTGCTGGCCTCCCTG LASLGVGLV
GGGGTGGGGCTGGTCACTC TLLGLAVG
TGCTCGGCCTGGCTGTGGGC
SS-035 Secretion ATGTCGGACCTGCTACTACT 69 MSDLLLLGLI 131
signal GGGCCTGATTGGGGGCCTG GGLTLLLLL
ACTCTCTTACTGCTGCTGAC TLLAFA
GCTGCTAGCCTTTGCC
SS-036 Secretion ATGGAGACTGTGGTGATTGT 70 METVVIVAI 132
signal TGCCATAGGTGTGCTGGCCA GVLATIFLAS
CCATGTTTCTGGCTTCGTTT FAALVLVCR
GCAGCCTTGGTGCTGGTTTG Q
CAGGCAG
SS-037 Secretion ATGCGCGGCTCTGTGGAGT 71 MAGSVECT 133
signal GCACCTGGGGTTGGGGGCA WGWGHCAP
CTGTGCCCCCAGCCCCCTGC SPLLLWTLL
TCCTTTGGACTCTACTTCTG LFAAPFGLL
TTTGCAGCCCCATTTGGCCT G
GCTGGGG
SS-038 Secretion ATGATGCCGTCCCGTACCAA 72 MMPSRTNLA 134
signal CCTGGCTACTGGAATCCCCA TGIPSSKVKY
GTAGTAAAGTGAAATATTC SRLSSTDDG
AAGGCTCTCCAGCACAGAC YIDLQFKKTP
GATGGCTACATTGACCTTCA PKIPYKAIAL
GTTTAAGAAAACCCCTCCTA ATVLFLIGA
AGATCCCTTATAAGGCCATC
GCACTTGCCACTGTGCTGTT
TTTGATTGGCGCC
SS-039 Secretion ATGGCCCTGCCCCAGATGTG 73 MALPQMCD 135
signal TGACGGGAGCCACTTGGCC GSHLASTLR
TCCACCCTCCGCTATTGCAT YCMTVSGTV
GACAGTCAGCGGCACAGTG VLVAGTLCF
GTTCTGGTGGCCGGGACGCT A
CTGCTTCGCT
SS-041 Vrg-6 TGAAAAAGTGGTTCGTTGCT 74 MKKWEVAA 136
GCCGGCATCGGCGCTGCCG GIGAGLLML
GACTCATGCTCTCCAGCGCC SSAA
GCCA
SS-042 Phoa ATGAAACAGAGCACCATTG 75 MKQSTIALA 137
CGCTGGCGCTGCTGCCGCTG LLPLLFTPVT
CTGTTTACCCCGGTGACCAA KA
AGCG
SS-043 OmpA ATGAAAAAAACCGCGATTG 76 MKKTAIAIA 138
CGATTGCGGTGGCGCTGGC VALAGFATV
GGGCTTTGCGACCGTGGCG AQA
CAGGCG
SS-044 STI ATGAAAAAACTGATGCTGG 77 MKKLMLAIF 139
CGATTTTTTTTAGCGTGCTG FSVLSFPSFS
AGCTTTCCGAGCTTTAGCCA QS
GAGC
SS-045 STII ATGAAAAAAAACATTGCGT 78 MKKNIAFLL 140
TTCTGCTGGCGAGCATGTTT ASMFVFSIAT
GTGTTTAGCATTGCGACCAA NAYA
CGCGTATGCG
SS-046 Amylase ATGTTTGCGAAACGCTTTAA 79 MFAKRFKTS 141

AACCAGCCTGCTGCCGCTGT

LLPLFAGFLL
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TABLE 5-continued

Signal Seguences

NUCLEOTIDE SEQ SEQ
SEQUENCE ID  ENCODED D
D Description (5'-3") NO. PEPTIDE ¥o.
TTGCGGGCTTTCTGCTGCTG LFHLVLAGP
TTTCATCTGGTGCTAGCGCE ARAS
CCCGGCGGCGECEAGT
$S-047 Alpha Factor  ATGCGCTTTCCGAGCATTTT 80  MRFPSIFTAV 142
TACCGCGGTGCTGTTTGCGE LFAASSALA
CGAGCAGCGCGCTGECE
$S-048 Alpha Factor  ATGCGCTTTCCGAGCATTTT 81  MRFPSIFTTV 143
TACCACCGTGCTGTTTGCGE LFAASSALA
CGAGCAGCGCGCTGECE
$S-049 Alpha Factor  ATGCGCTTTCCGAGCATTTT 82  MRFPSIFTSV 144
TACCAGCGTGCTGTTTGCGE LFAASSALA
CGAGCAGCGCGCTGECE
$S-050 Alpha Factor  ATGCGCTTTCCGAGCATTTT 83  MRFPSIFTHV 145
TACCCATGTGCTGTTTGCGE LFAASSALA
CGAGCAGCGCGCTGECE
$S-051 Alpha Factor  ATGCGCTTTCCGAGCATTTT 84  MRFPSIFTIV 146
TACCATTGTGCTGTTTGCGE LFAASSALA
CGAGCAGCGCGCTGECE
$S-052 Alpha Factor  ATGCGCTTTCCGAGCATTTT 85  MRFPSIFTEV 147
TACCTTTGTGCTGTTTGCGE LFAASSALA
CGAGCAGCGCGCTGECE
$S-053 Alpha Factor  ATGCGCTTTCCGAGCATTTT 86  MRFPSIFTEV 148
TACCGAAGTGCTGTTTGCGE LFAASSALA
CGAGCAGCGCGCTGECE
$S-054 Alpha Factor  ATGCGCTTTCCGAGCATTTT 87  MRFPSIFTGV 149
TACCGGCGTGCTGTTTGCGE LFAASSALA
CGAGCAGCGCGCTGECE
$$-055  Endoglu- ATGCGTTCCTCCCCCCTCCT 88 MRSSPLLRS 150
canase V CCGCTCCGCCETTATGRCCE AVVAALPVL
CCCTGCCGETETTGACCCTT ALA
ace
SS-056 Secretion ATGGGCGCEGCAACCETEC 89  MGABAAVRW 151
signal GCTGGCACTTGTGCATGCTG HLCVLLALG
CTGGCCCTGGECACACGCE TRGRL
GGCGACTE
$$-057 Fungal ATGAGGAGCTCCCTTGTGCT 90  MRSSLVLFF 152
GTTCTTTGTCTCTGCGTGCA VSAWTALA
CGGCCTTGGCCAG
$S-058 Fibronectin  ATGCTCAGGGGTCCGEGAC 91  MLRGPGPGR 153
CCGGECGGCTGCTGCTGCTA LLLLAVLCL
GCAGTCCTGTGCCTAGGEA GTSVRCTET
CATCGGTGCGCTGCACCGA GKSKR
AACCGGGAAGAGCAAGAGE
$S-059 Fibronectin  ATGCTTAGGGGTCCGEGEC 92 MLRGPGPGL 154
CCGGGCTGCTECTGCTEECC LLLAVQCLG
GTCCAGCTGGGGACAGCGE TAVPSTGA
TGCCCTCCACG
SS-060 Fibronectin  ATGCGCCGGGAGGCCCTGA 93 MRRGALTGL 155
CCGGGCTGCTCCTGATCCTG LLVLCLSVV
TGCCTGAGTGTTGTACTACG LRAAPSATS
TGCAGCCCCCTCTGCAACAA KKRR
GCAAGAAGCGCAGE
In the table, SS is secretion signal and MLS is mitochon- thereof. These sequences may be included at the beginning of
drial leader signal. The primary constructs or mmRNA ofthe ¢5 the polypeptide coding region, in the middle or at the termi-
present invention may be designed to encode any of the signal nus or alternatively into a flanking region. Further, any of the

sequences of SEQ ID NOs 94-155, or fragments or variants polynucleotide primary constructs of the present invention
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may also comprise one or more of the sequences defined by
SEQ ID NOs 32-93. These may be in the first region or either
flanking region.

Additional signal sequences which may be utilized in the
present invention include those taught in, for example, data-
bases such as those found at www.signalpeptide.de/ or pro-
line.bic.nus.edu.sg/spdb/. Those described in U.S. Pat. Nos.
8,124,379, 7,413,875 and 7,385,034 are also within the scope
of the invention and the contents of each are incorporated
herein by reference in their entirety.

Target Selection

According to the present invention, the primary constructs
comprise at least a first region of linked nucleosides encoding
at least one polypeptide of interest. The polypeptides of inter-
est or “Targets” of the present invention are listed in Lengthy
Table 6. Shown in Lengthy Table 6, in addition to the name
and description of the gene encoding the polypeptide of inter-
est (Target Description) are the ENSEMBL Transcript ID
(ENST), the ENSEMBL Protein ID (ENSP) and when avail-
able the optimized open reading frame sequence ID (Opti-
mized ORF SEQ ID). For any particular gene there may exist
one or more variants or isoforms. Where these exist, they are
shown in the table as well. It will be appreciated by those of
skill in the art that disclosed in the Table are potential flanking
regions. These are encoded in each ENST transcript either to
the 5' (upstream) or 3' (downstream) of the ORF or coding
region. The coding region is definitively and specifically dis-
closed by teaching the ENSP sequence. Consequently, the
sequences taught flanking that encoding the protein are con-
sidered flanking regions. It is also possible to further charac-
terize the 5' and 3' flanking regions by utilizing one or more
available databases or algorithms. Databases have annotated
the features contained in the flanking regions of the ENST
transcripts and these are available in the art.

Protein Cleavage Signals and Sites

In one embodiment, the polypeptides of the present inven-
tion may include at least one protein cleavage signal contain-
ing at least one protein cleavage site. The protein cleavage site
may be located at the N-terminus, the C-terminus, at any
space between the N- and the C-termini such as, but not
limited to, half-way between the N- and C-termini, between
the N-terminus and the half way point, between the half way
point and the C-terminus, and combinations thereof.

The polypeptides of the present invention may include, but
is not limited to, a proprotein convertase (or prohormone
convertase), thrombin or Factor Xa protein cleavage signal.
Proprotein convertases are a family of nine proteinases, com-
prising seven basic amino acid-specific subtilisin-like serine
proteinases related to yeast kexin, known as prohormone
convertase 1/3 (PC1/3), PC2, furin, PC4, PC5/6, paired basic
amino-acid cleaving enzyme 4 (PACE4) and PC7, and two
other subtilases that cleave at non-basic residues, called sub-
tilisin kexin isozyme 1 (SKI-1) and proprotein convertase
subtilisin kexin 9 (PCSK9). Non-limiting examples of protein
cleavage signal amino acid sequences are listing in Table 7. In
Table 7, “X” refers to any amino acid, “n” may be 0,2, 4 or 6
amino acids and “*” refers to the protein cleavage site. In
Table 7, SEQ ID NO: 26156 refers to when n=4 and SEQ ID
NO: 26157 refers to when n=6.
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TABLE 7

Protein Cleavage Site Sequences

Protein

Cleavage Amino Acid SEQ

Signal Cleavage Sequence ID NO

Proprotein R-X-X-R* 26154

convertase R-X-K/R-R* 26155
K/R-Xn-K/R* 26156 or

26157

Thrombin L-V-P-R*-G-S 26158
L-V-P-R* 26159
A/F/G/I/L/T/V/M- 26160
A/F/G/1/L/T/V/W-P-R*

Factor Xa I-E-G-R* 26161
I-D-G-R* 26162
A-E-G-R* 26163
A/F/G/I1/L/T/V/M-D/E-G-R* 26164

In one embodiment, the primary constructs and the
mmRNA of the present invention may be engineered such
that the primary construct or mmRNA contains at least one
encoded protein cleavage signal. The encoded protein cleav-
age signal may be located before the start codon, after the start
codon, before the coding region, within the coding region
such as, but not limited to, half way in the coding region,
between the start codon and the half way point, between the
half way point and the stop codon, after the coding region,
before the stop codon, between two stop codons, after the stop
codon and combinations thereof.

In one embodiment, the primary constructs or mmRNA of
the present invention may include at least one encoded pro-
tein cleavage signal containing at least one protein cleavage
site. The encoded protein cleavage signal may include, but is
not limited to, a proprotein convertase (or prohormone con-
vertase), thrombin and/or Factor Xa protein cleavage signal.
One of skill in the art may use Table 1 above or other known
methods to determine the appropriate encoded protein cleav-
age signal to include in the primary constructs or mmRNA of
the present invention. For example, starting with the signal of
Table 7 and considering the codons of Table 1 one can design
a signal for the primary construct which can produce a protein
signal in the resulting polypeptide.

In one embodiment, the polypeptides of the present inven-
tion include at least one protein cleavage signal and/or site.

As a non-limiting example, U.S. Pat. No. 7,374,930 and
U.S. Pub. No. 20090227660, herein incorporated by refer-
ence in their entireties, use a furin cleavage site to cleave the
N-terminal methionine of GLP-1 in the expression product
from the Golgi apparatus of the cells. In one embodiment, the
polypeptides of the present invention include at least one
protein cleavage signal and/or site with the proviso that the
polypeptide is not GLP-1.

In one embodiment, the primary constructs or mmRNA of
the present invention includes at least one encoded protein
cleavage signal and/or site.

In one embodiment, the primary constructs or mmRNA of
the present invention includes at least one encoded protein
cleavage signal and/or site with the proviso that the primary
construct or mmRNA does not encode GLP-1.

In one embodiment, the primary constructs or mmRNA of
the present invention may include more than one coding
region. Where multiple coding regions are present in the
primary construct or mmRNA of the present invention, the
multiple coding regions may be separated by encoded protein
cleavage sites. As a non-limiting example, the primary con-



US 9,050,297 B2

75

struct or mmRNA may be signed in an ordered pattern. On
such pattern follows AXBY form where A and B are coding
regions which may be the same or different coding regions
and/or may encode the same or different polypeptides, and X
and Y are encoded protein cleavage signals which may
encode the same or different protein cleavage signals. A sec-
ond such pattern follows the form AXYBZ where A and B are
coding regions which may be the same or different coding
regions and/or may encode the same or different polypep-
tides, and X, Y and Z are encoded protein cleavage signals
which may encode the same or different protein cleavage
signals. A third pattern follows the form ABXCY where A, B
and C are coding regions which may be the same or different
coding regions and/or may encode the same or different
polypeptides, and X and Y are encoded protein cleavage
signals which may encode the same or different protein cleav-
age signals.

In one embodiment, the polypeptides, primary constructs
and mmRNA can also contain sequences that encode protein
cleavage sites so that the polypeptides, primary constructs
and mmRNA can be released from a carrier region or a fusion
partner by treatment with a specific protease for said protein
cleavage site.

In one embodiment, the polypeptides, primary constructs
and mmRNA of'the present invention may include a sequence
encoding the 2A peptide. In one embodiment, this sequence
may be used to separate the coding region of two or more
polypeptides of interest. As a non-limiting example, the
sequence encoding the 2A peptide may be between coding
region A and coding region B (A-2Apep-B). The presence of
the 2A peptide would result in the cleavage of one long
protein into protein A, protein B and the 2A peptide. Protein
A and protein B may be the same or different polypeptides of
interest. In another embodiment, the 2A peptide may be used
in the polynucleotides, primary constructs and/or mmRNA of
the present invention to produce two, three, four, five, six,
seven, eight, nine, ten or more proteins.

Incorporating Post Transcriptional Control Modulators

In one embodiment, the polynucleotides, primary con-
structs and/or mmRNA of the present invention may include
at least one post transcriptional control modulator. These post
transcriptional control modulators may be, but are not limited
to, small molecules, compounds and regulatory sequences.
As a non-limiting example, post transcriptional control may
be achieved using small molecules identified by PTC Thera-
peutics Inc. (South Plainfield, N.J.) using their GEMS™
(Gene Expression Modulation by Small-Molecules) screen-
ing technology.

The post transcriptional control modulator may be a gene
expression modulator which is screened by the method
detailed in or a gene expression modulator described in Inter-
national Publication No. W02006022712, herein incorpo-
rated by reference in its entirety. Methods identifying RNA
regulatory sequences involved in translational control are
described in International Publication No. W02004067728,
herein incorporated by reference in its entirety; methods iden-
tifying compounds that modulate untranslated region depen-
dent expression of a gene are described in International Pub-
lication No. WO02004065561, herein incorporated by
reference in its entirety.

In one embodiment, the polynucleotides, primary con-
structs and/or mmRNA of the present invention may include
at least one post transcriptional control modulator is located
in the 5' and/or the 3' untranslated region of the polynucle-
otides, primary constructs and/or mmRNA of the present
invention
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In another embodiment, the polynucleotides, primary con-
structs and/or mmRNA of the present invention may include
at least one post transcription control modulator to modulate
premature translation termination. The post transcription
control modulators may be compounds described in or a
compound found by methods outlined in International Pub-
lication ~ Nos.  W02004010106,  W02006044456,
W02006044682, WO02006044503 and WO2006044505,
each of which is herein incorporated by reference in its
entirety. As a non-limiting example, the compound may bind
to a region of the 28S ribosomal RNA in order to modulate
premature translation termination (See e.g., W02004010106,
herein incorporated by reference in its entirety).

In one embodiment, polynucleotides, primary constructs
and/or mmRNA of the present invention may include at least
one post transcription control modulator to alter protein
expression. As a non-limiting example, the expression of
VEGF may be regulated using the compounds described in or
a compound found by the methods described in International
Publication Nos. WO02005118857, WO2006065480,
W02006065479 and WO2006058088, each of which is
herein incorporated by reference in its entirety.

The polynucleotides, primary constructs and/or mmRNA
of the present invention may include at least one post tran-
scription control modulator to control translation. In one
embodiment, the post transcription control modulator may be
a RNA regulatory sequence. As a non-limiting example, the
RNA regulatory sequence may be identified by the methods
described in International Publication No. W0O2006071903,
herein incorporated by reference in its entirety.

1II. MODIFICATIONS

Herein, in a polynucleotide (such as a primary construct or
an mRNA molecule), the terms “modification” or, as appro-
priate, “modified” refer to modification with respect to A, G,
U or C ribonucleotides. Generally, herein, these terms are not
intended to refer to the ribonucleotide modifications in natu-
rally occurring 5'-terminal mRNA cap moieties. In a polypep-
tide, the term “modification” refers to a modification as com-
pared to the canonical set of 20 amino acids, moiety)

The modifications may be various distinct modifications.
In some embodiments, the coding region, the flanking regions
and/or the terminal regions may contain one, two, or more
(optionally different) nucleoside or nucleotide modifications.
In some embodiments, a modified polynucleotide, primary
construct, or mmRNA introduced to a cell may exhibit
reduced degradation in the cell, as compared to an unmodified
polynucleotide, primary construct, or mmRNA.

The polynucleotides, primary constructs, and mmRNA can
include any useful modification, such as to the sugar, the
nucleobase, or the internucleoside linkage (e.g. to a linking
phosphate/to a phosphodiester linkage/to the phosphodiester
backbone). One or more atoms of a pyrimidine nucleobase
may be replaced or substituted with optionally substituted
amino, optionally substituted thiol, optionally substituted
alkyl (e.g., methyl or ethyl), or halo (e.g., chloro or fluoro). In
certain embodiments, modifications (e.g., one or more modi-
fications) are present in each of the sugar and the internucleo-
side linkage. Modifications according to the present invention
may be modifications of ribonucleic acids (RNAs) to deox-
yribonucleic acids (DNAs), threose nucleic acids (TNAs),
glycol nucleic acids (GNAs), peptide nucleic acids (PNAs),
locked nucleic acids (LNAs) or hybrids thereof). Additional
modifications are described herein.

As described herein, the polynucleotides, primary con-
structs, and mmRNA of the invention do not substantially
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induce an innate immune response of a cell into which the
mRNA is introduced. Features of an induced innate immune
response include 1) increased expression of pro-inflamma-
tory cytokines, 2) activation of intracellular PRRs (RIG-],
MDAS, etc, and/or 3) termination or reduction in protein
translation.

In certain embodiments, it may desirable to intracellularly
degrade a modified nucleic acid molecule introduced into the
cell. For example, degradation of a modified nucleic acid
molecule may be preferable if precise timing of protein pro-
duction is desired. Thus, in some embodiments, the invention
provides a modified nucleic acid molecule containing a deg-
radation domain, which is capable of being acted on in a
directed manner within a cell. In another aspect, the present
disclosure provides polynucleotides comprising a nucleoside
or nucleotide that can disrupt the binding of a major groove
interacting, e.g. binding, partner with the polynucleotide
(e.g., where the modified nucleotide has decreased binding
affinity to major groove interacting partner, as compared to an
unmodified nucleotide).

The polynucleotides, primary constructs, and mmRNA can
optionally include other agents (e.g., RNAi-inducing agents,
RNAI agents, siRNAs, shRNAs, miRNAs, antisense RNAs,
ribozymes, catalytic DNA, tRNA, RNAs that induce triple
helix formation, aptamers, vectors, etc.). In some embodi-
ments, the polynucleotides, primary constructs, or mmRNA
may include one or more messenger RNAs (mRNAs) and one
or more modified nucleoside or nucleotides (e.g., mmRNA
molecules). Details for these polynucleotides, primary con-
structs, and mmRNA follow.

Polynucleotides and Primary Constructs

The polynucleotides, primary constructs, and mmRNA of
the invention includes a first region of linked nucleosides
encoding a polypeptide of interest, a first flanking region
located at the 5' terminus of the first region, and a second
flanking region located at the 3' terminus of the first region.

In some embodiments, the polynucleotide, primary con-
struct, or mmRNA (e.g., the first region, first flanking region,
or second flanking region) includes n number of linked
nucleosides having Formula (Ia) or Formula (Ia-1):

(Ia)

(Ia-1)

or a pharmaceutically acceptable salt or stereoisomer thereof,
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wherein

Uis O, S, N(RY)_ , or C(RY),,, wherein nu is an integer
from O to 2 and each RYis, independently, H, halo, or option-
ally substituted alkyl;

- - - is a single bond or absent;

each of RY, R*, R'", R*", R*, R%, R?, R*, and R® is, inde-
pendently, if present, H, halo, hydroxy, thiol, optionally sub-
stituted alkyl, optionally substituted alkoxy, optionally sub-
stituted alkenyloxy, optionally substituted alkynyloxy,
optionally substituted aminoalkoxy, optionally substituted
alkoxyalkoxy, optionally substituted hydroxyalkoxy, option-
ally substituted amino, azido, optionally substituted aryl,
optionally substituted aminoalkyl, optionally substituted
aminoalkenyl, optionally substituted aminoalkynyl, or
absent; wherein the combination of R3 with one or more of
R1,R1",R2',R2" orR5 (e.g., the combination of R1'and R3,
the combination of R1" and R3, the combination of R2' and
R3, the combination of R2" and R3, or the combination of R5
and R3) can join together to form optionally substituted alky-
lene or optionally substituted heteroalkylene and, taken
together with the carbons to which they are attached, provide
an optionally substituted heterocyclyl (e.g., a bicyclic, tricy-
clic, or tetracyclic heterocyclyl); wherein the combination of
R5 with one or more of R1', R1", R2', or R2" (e.g., the
combination of R1' and RS, the combination of R1" and RS,
the combination of R2'and RS, or the combination of R2" and
R5) can join together to form optionally substituted alkylene
or optionally substituted heteroalkylene and, taken together
with the carbons to which they are attached, provide an
optionally substituted heterocyclyl (e.g., a bicyclic, tricyclic,
or tetracyclic heterocyclyl); and wherein the combination of
R* and one or more of R*', RY, R* R*", R, or R® can join
together to form optionally substituted alkylene or optionally
substituted heteroalkylene and, taken together with the car-
bons to which they are attached, provide an optionally sub-
stituted heterocyclyl (e.g., a bicyclic, tricyclic, or tetracyclic
heterocyclyl); each of m' and m" is, independently, an integer
from0to 3 (e.g., from 0to 2, from 0 to 1, from 1 to 3, or from
1t0 2);

each of Y', Y? and Y?, is, independently, O, S, Se,
—NRM—, optionally substituted alkylene, or optionally
substituted heteroalkylene, wherein R™" is H, optionally sub-
stituted alkyl, optionally substituted alkenyl, optionally sub-
stituted alkynyl, optionally substituted aryl, or absent;

each Y* is, independently, H, hydroxy, thiol, boranyl,
optionally substituted alkyl, optionally substituted alkenyl,
optionally substituted alkynyl, optionally substituted alkoxy,
optionally substituted alkenyloxy, optionally substituted
alkynyloxy, optionally substituted thioalkoxy, optionally
substituted alkoxyalkoxy, or optionally substituted amino;

each Y? is, independently, O, S, Se, optionally substituted
alkylene (e.g., methylene), or optionally substituted het-
eroalkylene;

n is an integer from 1 to 100,000; and

B is a nucleobase (e.g., a purine, a pyrimidine, or deriva-
tives thereof), wherein the combination of B and R*, the
combination of B and R?, the combination of B and R, or
the combination of B and R*" can, taken together with the
carbons to which they are attached, optionally form a bicyclic
group (e.g., a bicyclic heterocyclyl) or wherein the combina-
tionof B, R'", and R? orthe combination of B, R*", and R? can
optionally form a tricyclic or tetracyclic group (e.g., a tricy-
clic or tetracyclic heterocyclyl, such as in Formula (Ilo)-(IIp)
herein). In some embodiments, the polynucleotide, primary
construct, or mmRNA includes a modified ribose. In some
embodiments, the polynucleotide, primary construct, or
mmRNA (e.g., the first region, the first flanking region, or the
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second flanking region) includes n number of linked nucleo-
sides having Formula (Ia-2)-(Ia-5) or a pharmaceutically
acceptable salt or stereoisomer thereof

(Ia-2)

(Ia-3)

(Ia-4)

(Ia-5)

In some embodiments, the polynucleotide, primary con-
struct, or mmRNA (e.g., the first region, the first flanking
region, or the second flanking region) includes n number of
linked nucleosides having Formula (Ib) or Formula (Ib-1):

37 B
pU
I y! Rl
I 3\1; . R4
Y2

(Ib)

R
RS
Y’=P .
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-continued
(Ib-1)

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein

Uis O, S, N(RY) , or C(RY),,, wherein nu is an integer
from O to 2 and each RYis, independently, H, halo, or option-
ally substituted alkyl;

- - - is a single bond or absent;

each of R', R*, R*", and R* is, independently, H, halo,
hydroxy, optionally substituted alkyl, optionally substituted
alkoxy, optionally substituted alkenyloxy, optionally substi-
tuted alkynyloxy, optionally substituted aminoalkoxy,
optionally substituted alkoxyalkoxy, optionally substituted
hydroxyalkoxy, optionally substituted amino, azido, option-
ally substituted aryl, optionally substituted aminoalkyl,
optionally substituted aminoalkenyl, optionally substituted
aminoalkynyl, or absent; and wherein the combination of R
and R* or the combination of R* and R*" can be taken together
to form optionally substituted alkylene or optionally substi-
tuted heteroalkylene (e.g., to produce a locked nucleic acid);

each R’ is, independently, H, halo, hydroxy, optionally
substituted alkyl, optionally substituted alkoxy, optionally
substituted alkenyloxy, optionally substituted alkynyloxy,
optionally substituted aminoalkoxy, optionally substituted
alkoxyalkoxy, or absent;

each of Y', Y, and Y is, independently, O, S, Se,
—NRM—, optionally substituted alkylene, or optionally
substituted heteroalkylene, wherein R™" is H, optionally sub-
stituted alkyl, optionally substituted alkenyl, optionally sub-
stituted alkynyl, or optionally substituted aryl;

each Y* is, independently, H, hydroxy, thiol, boranyl,
optionally substituted alkyl, optionally substituted alkenyl,
optionally substituted alkynyl, optionally substituted alkoxy,
optionally substituted alkenyloxy, optionally substituted
alkynyloxy, optionally substituted alkoxyalkoxy, or option-
ally substituted amino;

n is an integer from 1 to 100,000; and

B is a nucleobase.

In some embodiments, the polynucleotide, primary con-
struct, or mmRNA (e.g., the first region, first flanking region,
or second flanking region) includes n number of linked
nucleosides having Formula (Ic):

nud

(e)

_YI_YS
R3
R>=7 .
YZ
Y3=I|’

|
v4

U Bsts

BI\EBZ

+ 20T g2
b1

R
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or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein

Uis O, S, N(RY),,, or C(RY),,, wherein nu is an integer
from 0 to 2 and each RYis, independently, H, halo, or option-
ally substituted alkyl;

- - - is a single bond or absent;

each of B!, B?, and B is, independently, a nucleobase (e.g.,
a purine, a pyrimidine, or derivatives thereof, as described
herein), H, halo, hydroxy, thiol, optionally substituted alkyl,
optionally substituted alkoxy, optionally substituted alkeny-
loxy, optionally substituted alkynyloxy, optionally substi-
tuted aminoalkoxy, optionally substituted alkoxyalkoxy,
optionally substituted hydroxyalkoxy, optionally substituted
amino, azido, optionally substituted aryl, optionally substi-
tuted aminoalkyl, optionally substituted aminoalkenyl, or
optionally substituted aminoalkynyl, wherein one and only
one of B!, B2, and B? is a nucleobase;

each of R”*,R?2, R?* R?, and R” is, independently, H, halo,
hydroxy, thiol, optionally substituted alkyl, optionally substi-
tuted alkoxy, optionally substituted alkenyloxy, optionally
substituted alkynyloxy, optionally substituted aminoalkoxy,
optionally substituted alkoxyalkoxy, optionally substituted
hydroxyalkoxy, optionally substituted amino, azido, option-
ally substituted aryl, optionally substituted aminoalkyl,
optionally substituted aminoalkenyl or optionally substituted
aminoalkynyl;

each of Y', Y2, and Y?, is, independently, O, S, Se,
—NRM—, optionally substituted alkylene, or optionally
substituted heteroalkylene, wherein R*" is H, optionally sub-
stituted alkyl, optionally substituted alkenyl, optionally sub-
stituted alkynyl, or optionally substituted aryl;

each Y* is, independently, H, hydroxy, thiol, boranyl,
optionally substituted alkyl, optionally substituted alkenyl,
optionally substituted alkynyl, optionally substituted alkoxy,
optionally substituted alkenyloxy, optionally substituted
alkynyloxy, optionally substituted thioalkoxy, optionally
substituted alkoxyalkoxy, or optionally substituted amino;

each Y? is, independently, O, S, Se, optionally substituted
alkylene (e.g., methylene), or optionally substituted het-
eroalkylene;

n is an integer from 1 to 100,000; and

wherein the ring including U can include one or more
double bonds.

In particular embodiments, the ring including U does not
have a double bond between U—CB’R”® or between
CBst34Bsz2.

In some embodiments, the polynucleotide, primary con-
struct, or mmRNA (e.g., the first region, first flanking region,
or second flanking region) includes n number of linked
nucleosides having Formula (Id):

d)

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein
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Uis O, S, N(RY),,, or C(RY),,, wherein nu is an integer
from 0 to 2 and each R¥is, independently, H, halo, or option-
ally substituted alkyl;

each R? is, independently, H, halo, hydroxy, thiol, option-
ally substituted alkyl, optionally substituted alkoxy, option-
ally substituted alkenyloxy, optionally substituted alkyny-
loxy, optionally substituted aminoalkoxy, optionally
substituted alkoxyalkoxy, optionally substituted hydroxy-
alkoxy, optionally substituted amino, azido, optionally sub-
stituted aryl, optionally substituted aminoalkyl, optionally
substituted aminoalkenyl, or optionally substituted ami-
noalkynyl;

each of Y', Y?, and Y?, is, independently, O, S, Se,
—NRM—, optionally substituted alkylene, or optionally
substituted heteroalkylene, wherein R™" is H, optionally sub-
stituted alkyl, optionally substituted alkenyl, optionally sub-
stituted alkynyl, or optionally substituted aryl;

each Y* is, independently, H, hydroxy, thiol, boranyl,
optionally substituted alkyl, optionally substituted alkenyl,
optionally substituted alkynyl, optionally substituted alkoxy,
optionally substituted alkenyloxy, optionally substituted
alkynyloxy, optionally substituted thioalkoxy, optionally
substituted alkoxyalkoxy, or optionally substituted amino;

eachY” is, independently, O, S, optionally substituted alky-
lene (e.g., methylene), or optionally substituted heteroalky-
lene;

n is an integer from 1 to 100,000; and

B is a nucleobase (e.g., a purine, a pyrimidine, or deriva-
tives thereof).

In some embodiments, the polynucleotide, primary con-
struct, or mmRNA (e.g., the first region, first flanking region,
or second flanking region) includes n number of linked
nucleosides having Formula (Ie):

nud

(Ie)

U
— v
N JK/B
N
ur
L R—N —_/

or a pharmaceutically acceptable salt or stereoisomer thereof,

wherein

each of U' and U" is, independently, O, S, N(RY),,,, or
C(RY),,,, wherein nu is an integer from 0 to 2 and each RY is,
independently, H, halo, or optionally substituted alkyl;

each R® is, independently, H, halo, hydroxy, thiol, option-
ally substituted alkyl, optionally substituted alkoxy, option-
ally substituted alkenyloxy, optionally substituted alkyny-
loxy, optionally substituted aminoalkoxy, optionally
substituted alkoxyalkoxy, optionally substituted hydroxy-
alkoxy, optionally substituted amino, azido, optionally sub-
stituted aryl, optionally substituted aminoalkyl, optionally
substituted aminoalkenyl, or optionally substituted ami-
noalkynyl;

each Y is, independently, O, S, optionally substituted
alkylene (e.g., methylene or ethylene), or optionally substi-
tuted heteroalkylene;

n is an integer from 1 to 100,000; and

B is a nucleobase (e.g., a purine, a pyrimidine, or deriva-
tives thereof).

In some embodiments, the polynucleotide, primary con-
struct, or mmRNA (e.g., the first region, first flanking region,
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or second flanking region) includes n number of linked
nucleosides having Formula (If) or (If-1):

an

(I£1)

v

or a pharmaceutically acceptable salt or stereoisomer thereof,

wherein

each of U' and U" is, independently, O, S, N, N(R%),,,,, or
C(RY),,,, wherein nu is an integer from 0 to 2 and each R¥is,
independently, H, halo, or optionally substituted alkyl (e.g.,
U'is O and U" is N);

- - - is a single bond or absent;

each of R', R*, R*", R*", R?, and R* is, independently, H,
halo, hydroxy, thiol, optionally substituted alkyl, optionally
substituted alkoxy, optionally substituted alkenyloxy, option-
ally substituted alkynyloxy, optionally substituted ami-
noalkoxy, optionally substituted alkoxyalkoxy, optionally
substituted hydroxyalkoxy, optionally substituted amino,
azido, optionally substituted aryl, optionally substituted ami-
noalkyl, optionally substituted aminoalkenyl, optionally sub-
stituted aminoalkynyl, or absent; and wherein the combina-
tion of R! and R, the combination of R*" and R?, the
combination of R* and R3, or the combination of R*" and R?
can be taken together to form optionally substituted alkylene
or optionally substituted heteroalkylene (e.g., to produce a
locked nucleic acid); each of m' and m" is, independently, an
integer from 0to 3 (e.g., from O to 2, from 0 to 1, from 1 to 3,
or from 1 to 2);

each of Y', Y2, and Y?, is, independently, O, S, Se,
—NRM—, optionally substituted alkylene, or optionally
substituted heteroalkylene, wherein R*" is H, optionally sub-
stituted alkyl, optionally substituted alkenyl, optionally sub-
stituted alkynyl, optionally substituted aryl, or absent;

each Y* is, independently, H, hydroxy, thiol, boranyl,
optionally substituted alkyl, optionally substituted alkenyl,
optionally substituted alkynyl, optionally substituted alkoxy,
optionally substituted alkenyloxy, optionally substituted
alkynyloxy, optionally substituted thioalkoxy, optionally
substituted alkoxyalkoxy, or optionally substituted amino;

each Y? is, independently, O, S, Se, optionally substituted
alkylene (e.g., methylene), or optionally substituted het-
eroalkylene;

n is an integer from 1 to 100,000; and
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B is a nucleobase (e.g., a purine, a pyrimidine, or deriva-
tives thereof).

In some embodiments of the polynucleotides, primary con-
structs, or mmRNA (e.g., Formulas (Ia), (Ia-1)-(Ia-3), (Ib)-
(If), and (IIa)-(1lp)), the ring including U has one or two
double bonds.

In some embodiments of the polynucleotides, primary con-
structs, or mmRNA (e.g., Formulas (Ia)-(Ia-5), (Ib)-(If-1),
([Ta)-(Ilp), (IIb-1), (IIb-2), (Hc-1)-(1lc-2), (1In-1), (IIn-2),
(IVa)-(IV1), and (IXa)-(IXr)), each of R', RY, and R*", if
present, is H. In further embodiments, each of R?, R*, and
R¥, if present, is, independently, H, halo (e.g., fluoro),
hydroxy, optionally substituted alkoxy (e.g., methoxy or
ethoxy), or optionally substituted alkoxyalkoxy. In particular
embodiments, alkoxyalkoxy is —(CH,),,(OCH,CH,),,
(CH,),;OR’, wherein s1 is an integer from 1 to 10 (e.g., from
1to 6 or from 1 to 4), each of s2 and s3, independently, is an
integer from 0 to 10 (e.g., from 0 to 4, from 0 to 6, from 1 to
4, from 1to 6, or from 1 to 10), and R'is H or C,_,, alkyl). In
some embodiments, s2is 0,s1is 1 or2,s3is0or 1, and R'is
C, ¢ alkyl.

In some embodiments of the polynucleotides, primary con-
structs, or mmRNA (e.g., Formulas (Ia)-(Ia-5), (Ib)-(If-1),
([Ta)-(Ilp), (IIb-1), (IIb-2), (Hc-1)-(1lc-2), (1In-1), (IIn-2),
(IVa)-(IV1), and (IXa)-(IXr)), each of R?, R*, and R*", if
present, is H. In further embodiments, each of R*, R*', and
R, if present, is, independently, H, halo (e.g., fluoro),
hydroxy, optionally substituted alkoxy (e.g., methoxy or
ethoxy), or optionally substituted alkoxyalkoxy. In particular
embodiments, alkoxyalkoxy is —(CH,),,(OCH,CH,),,
(CH,),;OR', wherein s1 is an integer from 1 to 10 (e.g., from
1to 6 or from 1 to 4), each of s2 and s3, independently, is an
integer from 0 to 10 (e.g., from 0 to 4, from 0 to 6, from 1 to
4, from 1to 6, or from 1 to 10), and R'is H or C,_,, alkyl). In
some embodiments, s2is 0,s1is 1 or2,s3is0or 1, and R'is
C,_¢alkyl.

In some embodiments of the polynucleotides, primary con-
structs, or mmRNA (e.g., Formulas (Ia)-(Ia-5), (Ib)-(If-1),
([Ta)-(Ip), (IIb-1), (IIb-2), (Hc-1)-(1lc-2), (1In-1), (IIn-2),
(IVa)-(IV1), and (IXa)-(IXr)), each of R?, R*, and R” is, inde-
pendently, H, halo (e.g., fluoro), hydroxy, optionally substi-
tuted alkyl, optionally substituted alkoxy (e.g., methoxy or
ethoxy), or optionally substituted alkoxyalkoxy. In particular
embodiments, R? is H, R*is H, R is H, or R?, R*, and R are
all H. In particular embodiments, R is C,_¢ alkyl, R*is C, ¢
alkyl, R®is C,_4 alkyl, or R®>, R*, and R® are all C,_4 alkyl. In
particular embodiments, R*> and R* are both H, and R is C
alkyl.

In some embodiments of the polynucleotides, primary con-
structs, or mmRNA (e.g., Formulas (Ia)-(Ia-5), (Ib)-(If-1),
([Ta)-(Ip), (IIb-1), (IIb-2), (Hc-1)-(1lc-2), (1In-1), (IIn-2),
(IVa)-(IV1), and (IXa)-(IXr)), R* and R? join together to form
optionally substituted alkylene or optionally substituted het-
eroalkylene and, taken together with the carbons to which
they are attached, provide an optionally substituted heterocy-
clyl (e.g., a bicyclic, tricyclic, or tetracyclic heterocyclyl,
such as trans-3',4' analogs, wherein R and R” join together to
form heteroalkylene (e.g., —(CH,),,O(CH,),,O(CH,),s—,
wherein each of b1, b2, and b3 are, independently, an integer
from O to 3).

In some embodiments of the polynucleotides, primary con-
structs, or mmRNA (e.g., Formulas (Ia)-(Ia-5), (Ib)-(If-1),
(Ta)- (Hp) (IIb-1), (11b-2), (Hc 1)-(Ile-2), (IIn-1), (Hn-2)
(IVa)- (IVI) and (IXa) (IXr)), R? and one or more of R*, R*
R?*, R*", or R’ join together to form optionally substltuted
alkylene or optionally substituted heteroalkylene and, taken
together with the carbons to which they are attached, provide
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an optionally substituted heterocyclyl (e.g., abicyclic, trlcy-
clic, or tetracychc heterocyclyl R? and one or more of R*,
R'" R*,R*, or R? join together to form heteroalkylene (e.g.,
—(CHz)b1O(CH2)b20(CH2)b3—, wherein each of bl, b2,
and b3 are, independently, an integer from O to 3).

In some embodiments of'the polynucleotides, primary con-
structs, or mmRNA (e.g., Formulas (Ia)-(Ia-5), (Ib)-(If-1),
(ITa)-(Ilp), (1Ib-1), (IIb-2), (Hc 1)-(Ile-2), (IIn-1), (Hn 2)
(IVa)- (IVI) and (IXa)-(IXr)), R® and one or more of R*', R*
R?, or R*" join together to form optionally substituted alky
lene or optionally substituted heteroalkylene and, taken
together with the carbons to which they are attached, provide
an optionally substituted heterocyclyl (e.g., a bicyclic, tricy-
clic, or tetracyclic heterocyclyl, R® and one or more of R*,
R', R*, or R* join together to form heteroalkylene (e.g.,
—(CH,),,;O(CH,),,O(CH,),;—, wherein each of bl, b2,
and b3 are, independently, an integer from O to 3).

In some embodiments of'the polynucleotides, primary con-
structs, or mmRNA (e.g., Formulas (Ia)-(Ia-5), (Ib)-(If-1),
(ITa)-(Ilp), (IIb-1), (IIb-2), (Hc-1)-(Tlc-2), (1In-1), (IIn-2),
(IVa)-(IV1), and (IXa)-(IXr)), each Y* is, independently, O, S,
or—NR™ _— wherein R is H, optionally substituted alkyl,
optionally substituted alkenyl, optionally substituted alkynyl,
or optionally substituted aryl. In particular embodiments, Y>
is NR™—, wherein R is H or optionally substituted alkyl
(e.g., C,_¢ alkyl, such as methyl, ethyl, isopropyl, or n-pro-
pyD.

In some embodiments of'the polynucleotides, primary con-
structs, or mmRNA (e.g., Formulas (Ia)-(Ia-5), (Ib)-(If-1),
(ITa)-(Ilp), (IIb-1), (IIb-2), (Hc-1)-(Tlc-2), (1In-1), (IIn-2),
(IVa)-(IV1), and (IXa)-(IXr)), each Y* is, independently, O or
S

In some embodiments of'the polynucleotides, primary con-
structs, or mmRNA (e.g., Formulas (Ia)-(Ia-5), (Ib)-(If-1),
(ITa)-(Ilp), (IIb-1), (IIb-2), (Hc-1)-(Tlc-2), (1In-1), (IIn-2),
(IVa)-(IV1), and (IXa)-(IXr)), R* is H; each R? is, indepen-
dently, H, halo (e.g., fluoro), hydroxy, optionally substituted
alkoxy (e.g., methoxy or ethoxy), or optionally substituted
alkoxyalkoxy (e.g., —(CH,),,(OCH,CH,),,(CH,),;OR’,
wherein sl is an integer from 1 to 10 (e.g., from 1 to 6 or from
1to 4), each of s2 and s3, independently, is an integer from 0
to 10 (e.g., from O to 4, from O to 6, from 1 to 4, from 1 to 6,
or from 1to 10), and R'is Hor C, _,, alkyl, such as wherein s2
is0,slis 1or2,s3is 0or 1,and R'is C,_, alkyl); each Y? is,
independently, O or —NR™ —, wherein R"" is H, optionally
substituted alkyl, optionally substituted alkenyl, optionally
substituted alkynyl, or optionally substituted aryl (e.g.,
wherein R is H or optionally substituted alkyl (e.g., C, ¢
alkyl, such as methyl, ethyl, isopropyl, or n-propyl)); and
eachY? is, independently, O or S (e.g., S). In further embodi-
ments, R? is H, halo (e.g., fluoro), hydroxy, optionally sub-
stituted alkyl, optionally substituted alkoxy (e.g., methoxy or
ethoxy), or optionally substituted alkoxyalkoxy. In yet further
embodiments, each Y' is, independently, O or —NR™—
wherein R™ is H, optionally substituted alkyl, optionally
substituted alkenyl, optionally substituted alkynyl, or option-
ally substituted aryl (e.g., wherein R™ is H or optionally
substituted alkyl (e.g., C,_¢ alkyl, such as methyl, ethyl, iso-
propyl, or n-propyl)); and each Y* is, independently, H,
hydroxy, thiol, optionally substituted alkyl, optionally substi-
tuted alkoxy, optionally substituted thioalkoxy, optionally
substituted alkoxyalkoxy, or optionally substituted amino.

In some embodiments of'the polynucleotides, primary con-
structs, or mmRNA (e.g., Formulas (Ia)-(Ia-5), (Ib)-(If-1),
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([Ta)-(Ilp), (IIb-1), (IIb-2), (Hc-1)-(1lc-2), (1In-1), (IIn-2),
(IVa)-(IV1), and (IXa)-(IXr)), each R' is, independently, H,
halo (e.g., fluoro), hydroxy, optionally substituted alkoxy
(e.g., methoxy or ethoxy), or optionally substituted alkoxy-
alkoxy (e.g., —(CH,),,(OCH,CH,),,(CH,),;OR’, wherein
sl is an integer from 1 to 10 (e.g., from 1 to 6 or from 1 to 4),
each of s2 and s3, independently, is an integer from 0 to 10
(e.g., from 0 to 4, from O to 6, from 1 to 4, from 1 to 6, or from
110 10),and R'is Hor C,_,, alkyl, such as wherein s2 is 0, s1
is1or2,s3is0or 1,and R'is C,_4alkyl); R*is H; each Y? is,
independently, O or —NR™—, wherein R™ is H, optionally
substituted alkyl, optionally substituted alkenyl, optionally
substituted alkynyl, or optionally substituted aryl (e.g.,
wherein R is H or optionally substituted alkyl (e.g., C, 4
alkyl, such as methyl, ethyl, isopropyl, or n-propyl)); and
eachY? is, independently, O or S (e.g., S). In further embodi-
ments, R is H, halo (e.g., fluoro), hydroxy, optionally sub-
stituted alkyl, optionally substituted alkoxy (e.g., methoxy or
ethoxy), or optionally substituted alkoxyalkoxy. In yet further
embodiments, each Y' is, independently, O or —NR™—
wherein R™ is H, optionally substituted alkyl, optionally
substituted alkenyl, optionally substituted alkynyl, or option-
ally substituted aryl (e.g., wherein R™ is H or optionally
substituted alkyl (e.g., C,_¢ alkyl, such as methyl, ethyl, iso-
propyl, or n-propyl)); and each Y* is, independently, H,
hydroxy, thiol, optionally substituted alkyl, optionally substi-
tuted alkoxy, optionally substituted thioalkoxy, optionally
substituted alkoxyalkoxy, or optionally substituted amino.

In some embodiments of the polynucleotides, primary con-
structs, or mmRNA (e.g., Formulas (Ia)-(Ia-5), (Ib)-(If-1),
([Ta)-(Ilp), (IIb-1), (IIb-2), (Hc-1)-(1lc-2), (1In-1), (IIn-2),
(IVa)-(IV1), and (IXa)-(IXr)), the ring including U is in the
p-D (e.g., p-D-ribo) configuration.

In some embodiments of the polynucleotides, primary con-
structs, or mmRNA (e.g., Formulas (Ia)-(Ia-5), (Ib)-(If-1),
([Ta)-(Ilp), (IIb-1), (IIb-2), (Hc-1)-(1lc-2), (1In-1), (IIn-2),
(IVa)-(IV1), and (IXa)-(IXr)), the ring including U is in the
a-L (e.g., a-L-ribo) configuration.

In some embodiments of the polynucleotides, primary con-
structs, or mmRNA (e.g., Formulas (Ia)-(Ia-5), (Ib)-(If-1),
([Ta)-(Ilp), (IIb-1), (IIb-2), (Hc-1)-(1lc-2), (1In-1), (IIn-2),
(IVa)-(IV1), and (IXa)-(IXr)), one or more B is not pseudou-
ridine () or 5-methyl-cytidine (m°C). In some embodi-
ments, about 10% to about 100% of n number of B nucleo-
bases is not y or m’C (e.g., from 10% to 20%, from 10% to
35%, from 10% to 50%, from 10% to 60%, from 10% to 75%,
from 10% to 90%, from 10% to 95%, from 10% to 98%, from
10% to 99%, from 20% to 35%, from 20% to 50%, from 20%
to 60%, from 20% to 75%, from 20% to 90%, from 20% to
95%, from 20% to 98%, from 20% to 99%, from 20% to
100%, from 50% to 60%, from 50% to 75%, from 50% to
90%, from 50% to 95%, from 50% to 98%, from 50% to 99%,
from 50% to 100%, from 75% to 90%, from 75% to 95%,
from 75% to 98%, from 75% to 99%, and from 75% to 100%
of n number of B is not ¢ or m*C). In some embodiments, B
is not ¢ or m*C.

In some embodiments of the polynucleotides, primary con-
structs, or mmRNA (e.g., Formulas (Ia)-(Ia-5), (Ib)-(If-1),
([Ta)-(Ilp), (IIb-1), (IIb-2), (Hc-1)-(1lc-2), (1In-1), (IIn-2),
(IVa)-(IVl), and (IXa)-(IXr)), when B is an unmodified
nucleobase selected from cytosine, guanine, uracil and
adenine, then at least one of Y*, Y2, or Y2 is not 0.

In some embodiments, the polynucleotide, primary con-
struct, or mmRNA includes a modified ribose. In some
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embodiments, the polynucleotide, primary construct, or
mmRNA (e.g., the first region, the first flanking region, or the
second flanking region) includes n number of linked nucleo-
sides having Formula (I1a)-(Ilc):

(11a)

(ITb)

(1lc)

or a pharmaceutically acceptable salt or stereoisomer thereof.
In particular embodiments, U is O or C(RY),,,, wherein nu is
an integer from 0 to 2 and each R” is, independently, H, halo,
or optionally substituted alkyl (e.g., U is —CH,— or
—CH—). In other embodiments, each of R*, R, R, R*, and
R’ is, independently, H, halo, hydroxy, thiol, optionally sub-
stituted alkyl, optionally substituted alkoxy, optionally sub-
stituted alkenyloxy, optionally substituted alkynyloxy,
optionally substituted aminoalkoxy, optionally substituted
alkoxyalkoxy, optionally substituted hydroxyalkoxy, option-
ally substituted amino, azido, optionally substituted aryl,
optionally substituted aminoalkyl, optionally substituted
aminoalkenyl, optionally substituted aminoalkynyl, or absent
(e.g., each R' and R? is, independently, H, halo, hydroxy,
optionally substituted alkyl, or optionally substituted alkoxy;
each R® and R* is, independently, H or optionally substituted
alkyl; and R® is H or hydroxy), and --. is a single bond or
double bond.

In particular embodiments, the polynucleotides or
mmRNA includes n number of linked nucleosides having
Formula (ITb-1)-(I1b-2):
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(IIb-1)

or

(11b-2)

___YI_YS B
v R?
Y3=I|’
Y4

or a pharmaceutically acceptable salt or stereoisomer thereof.
In some embodiments, U is O or CRY),,
integer from 0 to 2 and each RYis, independently, H, halo, or
optionally substituted alkyl (e.g., U is —CH,— or—CH—).
In other embodiments, each of R* and R? is, independently, H,
halo, hydroxy, thiol, optionally substituted alkyl, optionally
substituted alkoxy, optionally substituted alkenyloxy, option-
ally substituted alkynyloxy, optionally substituted ami-
noalkoxy, optionally substituted alkoxyalkoxy, optionally
substituted hydroxyalkoxy, optionally substituted amino,
azido, optionally substituted aryl, optionally substituted ami-
noalkyl, optionally substituted aminoalkenyl, optionally sub-
stituted aminoalkynyl, or absent (e.g., each R' and R? is,
independently, H, halo, hydroxy, optionally substituted alkyl,
or optionally substituted alkoxy, e.g., H, halo, hydroxy, alkyl,
or alkoxy). In particular embodiments, R* is hydroxy or
optionally substituted alkoxy (e.g., methoxy, ethoxy, or any
described herein).

wherein nu is an

In particular embodiments, the polynucleotide, primary
construct, or mmRNA includes n number of linked nucleo-
sides having Formula (Ilc-1)-(Ilc-4):

_ (Ile-1)
e G B

vz R?

Y3=pP

v
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-continued
- _ (Tle-2)
Fyi—ys B
O
R
vz R?
v3 =}|> >
Y4
_ (Ile-3)
iy B
U,
R
R
vz R?
Y3i—= | _1, or
I
Y4
_ (Ile-4)
I yi—vs B
O
R3
v R
Y3 =}|> —
Y4

or a pharmaceutically acceptable salt or stereoisomer thereof.
In some embodiments, U is O or C(RY),,,
integer from 0 to 2 and each RYis, independently, H, halo, or
optionally substituted alkyl (e.g., Uis —CH,— or —CH—).
In some embodiments, each of R*, R?, and R? is, indepen-
dently, H, halo, hydroxy, thiol, optionally substituted alkyl,
optionally substituted alkoxy, optionally substituted alkeny-
loxy, optionally substituted alkynyloxy, optionally substi-
tuted aminoalkoxy, optionally substituted alkoxyalkoxy,
optionally substituted hydroxyalkoxy, optionally substituted
amino, azido, optionally substituted aryl, optionally substi-
tuted aminoalkyl, optionally substituted aminoalkenyl,
optionally substituted aminoalkynyl, or absent (e.g., each R*
and R? is, independently, H, halo, hydroxy, optionally substi-
tuted alkyl, or optionally substituted alkoxy, e.g., H, halo,
hydroxy, alkyl, or alkoxy; and each R> is, independently, H or
optionally substituted alkyl)). In particular embodiments, R>
is optionally substituted alkoxy (e.g., methoxy or ethoxy, or
any described herein). In particular embodiments, R' is
optionally substituted alkyl, and R? is hydroxy. In other
embodiments, R! is hydroxy, and R? is optionally substituted
alkyl. In further embodiments, R® is optionally substituted
alkyl.

In some embodiments, the polynucleotide, primary con-
struct, or mmRNA includes an acyclic modified ribose. In
some embodiments, the polynucleotide, primary construct, or
mmRNA (e.g., the first region, the first flanking region, or the

second flanking region) includes n number of linked nucleo-
sides having Formula (I1d)-(1If):

wherein nu is an
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_ (I1d)
_Tis
Y —Y /U BR4
R\ R!
5
RYz R?
Y3=I|’ L,
Y4
B _ (Ile)
I vi—vs
Y —Y; /U BR4
R!
5
RYz R?
Y3=I|’ —, or
L
_ _ [4853)]
I ~i_~s
Y —Y. U BR4
R R!
5
RYz R?
Y3=}|) — >
v4

or a pharmaceutically acceptable salt or stereoisomer thereof.

In some embodiments, the polynucleotide, primary con-
struct, or mmRNA includes an acyclic modified hexitol. In
some embodiments, the polynucleotide, primary construct, or
mmRNA (e.g., the first region, the first flanking region, or the
second flanking region) includes n number of linked nucleo-
sides Formula (I1g)-(11j):

g

—Y'—Y3 U, B
R ‘R*
R3 R! R
v { g
R?
Y’=P ,
I
L 4 _
_ (IIh)
—Y'—Y3 U. B
Rr3" ‘R4
R3 RY R
v “,
2V } rn2
R?
Y’=pP ,
|
L 4 _
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-continued
. _ (1)
—_Y!I—v3 U B?
R3 v ’ Rb3
R3 B! B2
Y2 o | %, 4y sz
I:{bl
Y= I|> , or
L v _
_ _ (1))
—_Y!'—Y3 U B?
R3 A 4 Rb3
R3 B! B?
AR 2l N
I
Y3 =I|’ ,
L v _

or a pharmaceutically acceptable salt or stereoisomer thereof.

In some embodiments, the polynucleotide, primary con-
struct, or mmRNA includes a sugar moiety having a con-
tracted or an expanded ribose ring. In some embodiments, the
polynucleotide, primary construct, or mmRNA (e.g., the first
region, the first flanking region, or the second flanking region)
includes n number of linked nucleosides having Formula
(Ilk)-(IIm):

(ITk)

i

—vi—ys B
RS
R} | R
YZ
Y3=I|’ | , or
b
- o (Iim)
——Y'—Y U. B
RS@/RI’ RR!
o 1 et
N S ,
X

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein each of R', R'", R%, and R*" is, independently, H,
halo, hydroxy, optionally substituted alkyl, optionally substi-
tuted alkoxy, optionally substituted alkenyloxy, optionally
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substituted alkynyloxy, optionally substituted aminoalkoxy,
optionally substituted alkoxyalkoxy, or absent; and wherein
the combination of R* and R? or the combination of R*" and
R? can be taken together to form optionally substituted alky-
lene or optionally substituted heteroalkylene.

In some embodiments, the polynucleotide, primary con-
struct, or mmRNA includes a locked modified ribose. In some
embodiments, the polynucleotide, primary construct, or
mmRNA (e.g., the first region, the first flanking region, or the
second flanking region) includes n number of linked nucleo-
sides having Formula (IIn):

(ITn)

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein R* is O, S, or —NR™ — wherein R* is H, option-
ally substituted alkyl, optionally substituted alkenyl, option-
ally substituted alkynyl, or optionally substituted aryl and R*"
is optionally substituted alkylene (e.g, —CH,—,
—CH,CH,—, or —CH,CH,CH,—) or optionally substi-
tuted heteroalkylene (e.g., —CH,NH—, —CH,CH,NH—,
—CH,OCH,—, or —CH,CH,OCH,—)(e.g., R* is O and
R* is optionally substituted alkylene (e.g., —CH,—,
—CH,CH,—, or —CH,CH,CH,—)).

In some embodiments, the polynucleotide, primary con-
struct, or mmRNA includes n number of linked nucleosides
having Formula (IIn-1)-(II-n2):

(IIn-1)

(IIn-2)

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein R* is O, S, or —NR™ — wherein R* is H, option-
ally substituted alkyl, optionally substituted alkenyl, option-
ally substituted alkynyl, or optionally substituted aryl and R*"
is optionally substituted alkylene (e.g, —CH,—,
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—CH,CH,—, or —CH,CH,CH,—) or optionally substi-
tuted heteroalkylene (e.g., —CH,NH—, —CH,CH,NH—,
—CH,OCH,—, or —CH,CH,OCH,—) (e.g., R* is O and
R?" is optionally substituted alkylene (e.g., —CH,—,
—CH,CH,—, or —CH,CH,CH,—)).

In some embodiments, the polynucleotide, primary con-
struct, or mmRNA includes a locked modified ribose that
forms a tetracyclic heterocyclyl. In some embodiments, the
polynucleotide, primary construct, or mmRNA (e.g., the first
region, the first flanking region, or the second flanking region)

includes n number of linked nucleosides having Formula
(Ilo):

(Ilo)

or

(IIp)

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein R'??, R*?¢, TV, T'", T?, T*', V!, and V? are as
described herein.

Any of the formulas for the polynucleotides, primary con-
structs, or mmRNA can include one or more nucleobases
described herein (e.g., Formulas (b1)-(b43)).

In one embodiment, the present invention provides meth-
ods of preparing a polynucleotide, primary construct, or
mmRNA, wherein the polynucleotide comprises n number of
nucleosides having Formula (Ia), as defined herein:

(Ia)

I RS T v
Y Y, U B
3\\\ thnd
%{5 R! R! >
Y2 E R o~
| \&,
m
Y3=I|’ »
v+

the method comprising reacting a compound of Formula
(Illa), as defined herein:
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(I11a)

Y6

with an RNA polymerase, and a cDNA template.

In a further embodiment, the present invention provides
methods of amplifying a polynucleotide, primary construct,
ormmRNA comprising at least one nucleotide (e.g., mmRNA
molecule), the method comprising: reacting a compound of
Formula (Illa), as defined herein, with a primer, a cDNA
template, and an RNA polymerase.

In one embodiment, the present invention provides meth-
ods of preparing a polynucleotide, primary construct, or
mmRNA comprising at least one nucleotide (e.g., mmRNA
molecule), wherein the polynucleotide comprises n number
of' nucleosides having Formula (Ia), as defined herein:

(Ta-1)

the method comprising reacting a compound of Formula
(IlTa-1), as defined herein:

(ITa-1)

Y6

with an RNA polymerase, and a cDNA template.

In a further embodiment, the present invention provides
methods of amplifying a polynucleotide, primary construct,
ormmRNA comprising at least one nucleotide (e.g., mmRNA
molecule), the method comprising:

reacting a compound of Formula (Illa-1), as defined
herein, with a primer, a cDNA template, and an RNA poly-
merase.

In one embodiment, the present invention provides meth-
ods of preparing a modified mRNA comprising at least one
nucleotide (e.g., mmRNA molecule), wherein the polynucle-
otide comprises n number of nucleosides having Formula
(Ia-2), as defined herein:
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(Ia-2)

the method comprising reacting a compound of Formula
(IlTa-2), as defined herein:

(ITTa-2)

Y6

with an RNA polymerase, and a cDNA template.

In a further embodiment, the present invention provides
methods of amplifying a modified mRNA comprising at least
one nucleotide (e.g., mmRNA molecule), the method com-
prising:

reacting a compound of Formula (Illa-2), as defined
herein, with a primer, a cDNA template, and an RNA poly-
merase.

In some embodiments, the reaction may be repeated from
1 to about 7,000 times. In any of the embodiments herein, B
may be a nucleobase of Formula (b1)-(b43).

The polynucleotides, primary constructs, and mmRNA can
optionally include 5' and/or 3' flanking regions, which are
described herein.

Modified RNA (mmRNA) Molecules

The present invention also includes building blocks, e.g.,
modified ribonucleosides, modified ribonucleotides, of
modified RNA (mmRNA) molecules. For example, these
building blocks can be useful for preparing the polynucle-
otides, primary constructs, or mmRNA of the invention.

In some embodiments, the building block molecule has For-
mula (Illa) or (1lla-1):

(ITla)
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-continued
(ITa-1)
Y3
6 ”_ 1 5
Y Il’ Y Y, U B
¢ = fiRd
r RS Iy Rl”
Y2 H "
R?
-
Y3=I|’ Y’
Y4

q

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein the substituents are as described herein (e.g., for
Formula (Ia) and (Ia-1)), and wherein when B is an unmodi-
fied nucleobase selected from cytosine, guanine, uracil and
adenine, then at least one of Y*, Y?, or Y? is not 0.

In some embodiments, the building block molecule, which
may be incorporated into a polynucleotide, primary con-
struct, or mmRNA, has Formula (IVa)-(IVb):

IVa)
Y3
Y6 Il’—Yl Y3 B or
v A
O\K
IVb)
Y3
Y6 Il’—Yl Y3 B,
v A
HO OH

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein B is as described herein (e.g., any one of (b1)-(b43)).
In particular embodiments, Formula (IVa) or (IVb) is com-
bined with a modified uracil (e.g., any one of formulas (b1)-
(b9), (b21)-(b23), and (b28)-(b31), such as formula (bl),
(b8), (b28), (b29), or (b30)). In particular embodiments, For-
mula (IVa) or (IVb) is combined with a modified cytosine
(e.g., any one of formulas (b10)-(b14), (b24), (b25), and
(b32)-(b36), such as formula (b10) or (b32)). In particular
embodiments, Formula (IVa) or (IVb) is combined with a
modified guanine (e.g., any one of formulas (b15)-(b17) and
(b37)-(b40)). In particular embodiments, Formula (IVa) or
(IVDb) is combined with a modified adenine (e.g., any one of
formulas (b18)-(b20) and (b41)-(b43)).

In some embodiments, the building block molecule, which
may be incorporated into a polynucleotide, primary con-
struct, or mmRNA, has Formula (IVc)-(IVk):
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Y3
Y* Il’—Yl v B
v u
i ‘\\\ <3
R3 R,
HO R
Y3
Y6 Il’—Yl vs B
Y4 r \G/
HO R
Y3
Y* Il’—Yl 5 2
4 .
! = “
HO R?
Y3
Y8 Il’—Y%\YS B
v b )
R
HO R?

YG
Y3
6 ||_ 1
% Il’ il s 8
U
Y4 » R //
e R!
o oCH,,
Y3
N
% I|> il s 8
v U
WX
R R!,
o 3
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(IVe)

Ivd)

(IVe)

avi)

Vg

(IVh)

(Ivi)
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-continued
Y3
I
Y }|>—Y s &
v 3y
3 A\
R R!
o oo,
Y3
I
Y }|>—Y s B
v A
3\“\\ Rl or
HO 7l
Y3
6, ” 1
Y }|>—Y s B
v AU
» A
o Rl
HO ki

avp

IVk)

avi

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein B is as described herein (e.g., any one of (b1)-(b43)).
In particular embodiments, one of Formulas (IVc)-(IVk) is
combined with a modified uracil (e.g., any one of formulas
(b1)-(b9), (b21)-(b23), and (b28)-(b31), suchas formula (b1),
(b8), (b28), (b29), or (b30)). In particular embodiments, one
of Formulas (IVc)-(IVk) is combined with a modified
cytosine (e.g., any one of formulas (b10)-(b14), (b24), (b25),
and (b32)-(b36), such as formula (b10) or (b32)). In particular
embodiments, one of Formulas (IVc¢)-(IVk) is combined with
amodified guanine (e.g., any one of formulas (b15)-(b17) and
(b37)-(b40)). In particular embodiments, one of Formulas
(IVe)-(IVK) is combined with a modified adenine (e.g., any

one of formulas (b18)-(b20) and (b41)-(b43)).

In other embodiments, the building block molecule, which
may be incorporated into a polynucleotide, primary con-

struct, or mmRNA, has Formula (Va) or (Vb):

Y6

(Va)

(Vb)



US 9,050,297 B2

99

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein B is as described herein (e.g., any one of (b1)-(b43)).

In other embodiments, the building block molecule, which
may be incorporated into a polynucleotide, primary con-
struct, or mmRNA, has Formula (IXa)-(IXd):

(IXa)
Y3
A
vo4—p—.
| X (0} B
i r D/ |
o B
(IXb)
Y3
||
Y64 p—v1
| t (0] [
i r D/ |
HO B
(IXc)
Y3
|
Y61—P—vVd 5
44 WB, )
/
HO kel
(IXd)
Y3
|
Yo—4—P—Vd
| X O B
4 >
Y r D/
HO i

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein B is as described herein (e.g., any one of (b1)-(b43)).
In particular embodiments, one of Formulas (IXa)-(IXd) is
combined with a modified uracil (e.g., any one of formulas
(b1)-(b9), (b21)-(b23), and (b28)-(b31), such as formula (b1),
(b8), (b28), (b29), or (b30)). In particular embodiments, one
of Formulas (IXa)-(IXd) is combined with a modified
cytosine (e.g., any one of formulas (b10)-(b14), (b24), (b25),
and (b32)-(b36), such as formula (b10) or (b32)). In particular
embodiments, one of Formulas (IXa)-(IXd) is combined with
amodified guanine (e.g., any one of formulas (b15)-(b17) and
(b37)-(b40)). In particular embodiments, one of Formulas
(IXa)-(IXd) is combined with a modified adenine (e.g., any
one of formulas (b18)-(b20) and (b41)-(b43)).

In other embodiments, the building block molecule, which
may be incorporated into a polynucleotide, primary con-
struct, or mmRNA, has Formula (IXe)-(IXg):
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X (IXe)
Y-
Yo—4—P—Yd
I X B
HO R
\ (IX1)
Y-
Yé—4—p—vd
I ¥
BH O, B, or
2 ¥
HO r2
(Xg)
Se
I
Y6—4—P—YL
I v o -
HO 2

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein B is as described herein (e.g., any one of (b1)-(b43)).
In particular embodiments, one of Formulas (IXe)-(IXg) is
combined with a modified uracil (e.g., any one of formulas
(b1)-(b9), (b21)-(b23), and (b28)-(b31), suchas formula (b1),
(b8), (b28), (b29), or (b30)). In particular embodiments, one
of Formulas (IXe)-(IXg) is combined with a modified
cytosine (e.g., any one of formulas (b10)-(b14), (b24), (b25),
and (b32)-(b36), such as formula (b10) or (b32)). In particular
embodiments, one of Formulas (IXe)-(IXg) is combined with
amodified guanine (e.g., any one of formulas (b15)-(b17) and
(b37)-(b40)). In particular embodiments, one of Formulas
(IXe)-(1Xg) is combined with a modified adenine (e.g., any
one of formulas (b18)-(b20) and (b41)-(b43)).

In other embodiments, the building block molecule, which
may be incorporated into a polynucleotide, primary con-
struct, or mmRNA, has Formula (IXh)-(IXk):

(IXh)
Y3
Yé4—p—Vd
[ v
v o 8,
A
s R!
\: &
HO \°o
(IXi)
Y3
Yo4+—P—Vd
| X o B
4 >
Y Id
oH
o ko8



US 9,050,297 B2

101
-continued
, (IXj)
Y
Yo1—P—Yd
| X o )
A, Or
T4 /
CH;
HO oH
X (IXk)
Y
Yé—4+—pP—YL
[ Y
v o) 8,
o
Y
HO on

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein B is as described herein (e.g., any one of (b1)-(b43)).
In particular embodiments, one of Formulas (IXh)-(IXk) is
combined with a modified uracil (e.g., any one of formulas
(b1)-(b9), (b21)-(b23), and (b28)-(b31), such as formula (b1),
(b8), (b28), (b29), or (b30)). In particular embodiments, one
of Formulas (IXh)-(IXk) is combined with a modified
cytosine (e.g., any one of formulas (b10)-(b14), (b24), (b25),
and (b32)-(b36), such as formula (b10) or (b32)). In particular
embodiments, one of Formulas (IXh)-(IXk) is combined with
amodified guanine (e.g., any one of formulas (b15)-(b17) and
(b37)-(b40)). In particular embodiments, one of Formulas
(IXh)-(IXk) is combined with a modified adenine (e.g., any
one of formulas (b18)-(b20) and (b41)-(b43)).

In other embodiments, the building block molecule, which
may be incorporated into a polynucleotide, primary con-
struct, or mmRNA, has Formula (IX1)-(IXr):

XD
O O
l l
HO P—O P—O
| | o 1
OH N BH, /
HOS 2OH,
(IXm)
O O
l |
HO P—O P—0O
| | o1
OH A CH;3 /|
HOS 2OH,
(IXm)
(€] Se
l |
HO P—O P—0O
| | o1
OH OH
2 rl
HOS "’OH,
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-continued
(IXo)
O
I
HO Il’— (@] B
OH 0
A
el F,
(IXp)
O
I
HO Il’— (@] B
OH 0.
A
1o L
(Xq)
O
I
HO Il’— (@] B
OH 0
A
HOS 1Br, or
(IXr)
HO

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein each rl and r2 is, independently, an integer from 0 to
5 (e.g., from O to 3, from 1 to 3, or from 1 to 5) and B is as
described herein (e.g., any one of (b1)-(b43)). In particular
embodiments, one of Formulas (IX1)-(IXr) is combined with
a modified uracil (e.g., any one of formulas (b1)-(b9), (b21)-
(b23), and (b28)-(b31), such as formula (bl), (b8), (b28),
(b29), or (b30)). In particular embodiments, one of Formulas
(IX1)-(IXr) is combined with a modified cytosine (e.g., any
one of formulas (b10)-(b14), (b24), (b25), and (b32)-(b36),
such as formula (b10) or (b32)). In particular embodiments,
one of Formulas (IX1)-(IXr) is combined with a modified
guanine (e.g., any one of formulas (b15)-(b17) and (b37)-
(b40)). In particular embodiments, one of Formulas (IX1)-
(IXr) is combined with a modified adenine (e.g., any one of
formulas (b18)-(b20) and (b41)-(b43)).

In some embodiments, the building block molecule, which
may be incorporated into a polynucleotide, primary con-

struct, or mmRNA, can be selected from the group consisting
of:
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or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein each r is, independently, an integer from O to 5 (e.g.,
from O to 3, from 1 to 3, or from 1 to 5).

In some embodiments, the building block molecule, which
may be incorporated into a polynucleotide, primary con-
struct, or mmRNA, can be selected from the group consisting
of:
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or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein each r is, independently, an integer from O to 5 (e.g.,
from 0 to 3, from 1 to 3, or from 1 to 5) and s1 is as described
herein.

In some embodiments, the building block molecule, which
may be incorporated into a nucleic acid (e.g., RNA, mRNA,
polynucleotide, primary construct, or mmRNA), is a modi-
fied uridine (e.g., selected from the group consisting of:
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or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein Y', Y3, Y*, Y5, and r are as described herein (e.g., %
each r is, independently, an integer from O to 5, such as from

0 to 3, from 1 to 3, or from 1 to 5)).

In some embodiments, the building block molecule, which
may be incorporated into a polynucleotide, primary con- ¢s
struct, or mmRNA, is a modified cytidine (e.g., selected from
the group consisting of:

(BB-126)
NH»
Y6
(BB-127)
NH,
Y6
(BB-128)
NH,
¥ HN)\N
Y6 Il) —_— Yl \ o
4 o
4
HO oH
(BB-129)
NH»
Y6
(BB-130)
NH,
Y6




129

US 9,050,297 B2

130

-continued -continued

(BB-131)
H;C HC__CH;
N
5
Y6
Y6
10
Y6

15
(BB-132)

(BB-137)
20
YG
25
(BB-133)
N _-CHs 30 NHAc
AcO
Y3
6 a
Y 35 Y
YG

(BB-138)
N
N/KO,
4 o
A
40 HO: bH
(BB-134)
45 TBDMS .
Y3
50
H;C

Y6

2
i
\N/CH3

(BB-139)
| N/go
O,
(BB-135) 454

60

2
Wi

(BB-140)
\E&N
P—YL N/go
> 0
65

(BB-136)



US 9,050,297 B2

32

1
-continued

131
-continued

(BB-146)

(BB-141)

N
/J\O
OH

(BB-147)

15

(BB-142)

20
25

(BB-148)

(BB-143)

30

40

(BB-149)

(BB-144)

(BB-150)

=
3 3
. Z z.
— o =i Q
‘n, s,
'ty o ¢O
=) =)
i i
£ 2
[Ia) =3 [Ta) =3 [T
~ s} el =} Nl
o
3
)
a
)
Z




US 9,050,297 B2
133

-continued -continued
BB-151
NH, ( ) NH,
HO
OHC
N N 5 A N
I | /K ﬁ3 | /J\
6 ﬂ_Yl N 0, Y6 Il’—Yl N 0,
I
¥4 O, v4 0
r 10 r
- o HO oH
15
(BB-152)
NH,
OHC
\ N

Y6 }|>—Y1 )
$ % 25 v ©
S 2 r
HO 0OCH;
HO oH
(BB-153)
& 30
H;C )J\
N N
3 | (BB-158)
6 ﬂ_Yl N NH, i NH
I
o)
Y4 N CO,Fmoc
' T | J\ /\/\)\
R A 6 E_Yl N g NHFmoe, and
HO OH 40 v* O
A
NE, (BB-154) e e
Br Ny 45
Y3 | /K
v6 ﬂ_Yl N 0, (BB-159)
|4 o NH
Y / 50
N
HO oH

CO,H
Y$ P—Yl! N N NI,
(BB-155) |
NH, 55

Y6

oH
60
o
Y4

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein Y, Y>, Y*, Y®, and r are as described herein (e.g.,
each r is, independently, an integer from O to 5, such as from
65

0to 3, from 1 to 3, or from 1 to 5)). For example, the building

block molecule, which may be incorporated into a polynucle-
otide, primary construct, or mmRNA, can be:
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(BB-160)

(BB-161)

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein each r is, independently, an integer from O to 5 (e.g.,
from O to 3, from 1 to 3, or from 1 to 5).

In some embodiments, the building block molecule, which
may be incorporated into a polynucleotide, primary con-
struct, or mmRNA, is a modified adenosine (e.g., selected
from the group consisting of:
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or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein Y', Y?, Y*, Y®, and r are as described herein (e.g.,
each r is, independently, an integer from O to 5, such as from
0 to 3, from 1 to 3, or from 1 to 5)).

In some embodiments, the building block molecule, which
may be incorporated into a polynucleotide, primary con-
struct, or mmRNA, is a modified guanosine (e.g., selected
from the group consisting of:
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or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein Y', Y?, Y*, Y®, and r are as described herein (e.g.,

each r is, independently, an integer from O to 5, such as from
0 to 3, from 1 to 3, or from 1 to 5)).

In some embodiments, the chemical modification can
include replacement of C group at C-5 of the ring (e.g., for a
pyrimidine nucleoside, such as cytosine or uracil) with N
(e.g., replacement of the >CH group at C-5 with >NR™
group, wherein R™1 is H or optionally substituted alkyl). For
example, the building block molecule, which may be incor-

porated into a polynucleotide, primary construct, or
mmRNA, can be:
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HO

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein each r is, independently, an integer from O to 5 (e.g.,
from O to 3, from 1 to 3, or from 1 to 5).

In another embodiment, the chemical modification can
include replacement of the hydrogen at C-5 of cytosine with
halo (e.g., Br, C1, F, or I) or optionally substituted alkyl (e.g.,
methyl). For example, the building block molecule, which

may be incorporated into a polynucleotide, primary con-
struct, or mmRNA, can be:
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or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein each r is, independently, an integer from O to 5 (e.g.,
from O to 3, from 1 to 3, or from 1 to 5).

In yet a further embodiment, the chemical modification can
include a fused ring that is formed by the NH, at the C-4
position and the carbon atom at the C-5 position. For
example, the building block molecule, which may be incor-
porated into a polynucleotide, primary construct, or
mmRNA, can be:

(BB-246)

HO

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein each r is, independently, an integer from O to 5 (e.g.,
from O to 3, from 1 to 3, or from 1 to 5).
Modifications on the Sugar

The modified nucleosides and nucleotides (e.g., building
block molecules), which may be incorporated into a poly-
nucleotide, primary construct, or mmRNA (e.g., RNA or
mRNA, as described herein), can be modified on the sugar of
the ribonucleic acid. For example, the 2' hydroxyl group (OH)
can be modified or replaced with a number of different sub-
stituents. Exemplary substitutions at the 2'-position include,
but are not limited to, H, halo, optionally substituted C,
alkyl; optionally substituted C,_s alkoxy; optionally substi-
tuted Cq |, aryloxy; optionally substituted C;_g cycloalkyl;
optionally substituted C,_, cycloalkoxy; optionally substi-
tuted C,_,, aryloxy; optionally substituted Cg ,, aryl-C, ¢
alkoxy, optionally substituted C, ,, (heterocyclyl)oxy; a
sugar (e.g., ribose, pentose, or any described herein); a poly-
ethyleneglycol (PEG), —O(CH,CH,0),CH,CH,OR, where
R is H or optionally substituted alkyl, and n is an integer from
0to 20 (e.g., from 0 to 4, from 0 to 8, from 0 to 10, from O to
16, from 1 to 4, from 1 to 8, from 1 to 10, from 1 to 16, from
1 to 20, from 2 to 4, from 2 to 8, from 2 to 10, from 2 to 16,
from 2 to 20, from 4 to 8, from 4 to 10, from 4 to 16, and from
4 to 20); “locked” nucleic acids (LNA) in which the 2'-hy-
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droxyl is connected by a C,_ alkylene or C, ¢ heteroalkylene
bridge to the 4'-carbon of the same ribose sugar, where exem-
plary bridges included methylene, propylene, ether, or amino
bridges; aminoalkyl, as defined herein; aminoalkoxy, as
defined herein; amino as defined herein; and amino acid, as
defined herein

Generally, RNA includes the sugar group ribose, which is a
5-membered ring having an oxygen. Exemplary, non-limiting
modified nucleotides include replacement of the oxygen in
ribose (e.g., with S, Se, or alkylene, such as methylene or
ethylene); addition of a double bond (e.g., to replace ribose
with cyclopentenyl or cyclohexenyl); ring contraction of
ribose (e.g., to form a 4-membered ring of cyclobutane or
oxetane); ring expansion of ribose (e.g., to form a 6- or
7-membered ring having an additional carbon or heteroatom,
such as for anhydrohexitol, altritol, mannitol, cyclohexanyl,
cyclohexenyl, and morpholino that also has a phosphorami-
date backbone); multicyclic forms (e.g., tricyclo; and
“unlocked” forms, such as glycol nucleic acid (GNA) (e.g.,
R-GNA or S-GNA, where ribose is replaced by glycol units
attached to phosphodiester bonds), threose nucleic acid
(TNA, where ribose is replace with a-L-threofuranosyl-
(3'—2"), and peptide nucleic acid (PNA, where 2-amino-
ethyl-glycine linkages replace the ribose and phosphodiester
backbone). The sugar group can also contain one or more
carbons that possess the opposite stereochemical configura-
tion than that of the corresponding carbon in ribose. Thus, a
polynucleotide, primary construct, or mmRNA molecule can
include nucleotides containing, e.g., arabinose, as the sugar.
Modifications on the Nucleobase

The present disclosure provides for modified nucleosides
and nucleotides. As described herein “nucleoside” is defined
as a compound containing a sugar molecule (e.g., a pentose or
ribose) or a derivative thereof in combination with an organic
base (e.g., a purine or pyrimidine) or a derivative thereof (also
referred to herein as “nucleobase”). As described herein,
“nucleotide” is defined as a nucleoside including a phosphate
group. The modified nucleotides may by synthesized by any
useful method, as described herein (e.g., chemically, enzy-
matically, or recombinantly to include one or more modified
or non-natural nucleosides).

The modified nucleotide base pairing encompasses not
only the standard adenosine-thymine, adenosine-uracil, or
guanosine-cytosine base pairs, but also base pairs formed
between nucleotides and/or modified nucleotides comprising
non-standard or modified bases, wherein the arrangement of
hydrogen bond donors and hydrogen bond acceptors permits
hydrogen bonding between a non-standard base and a stan-
dard base or between two complementary non-standard base
structures. One example of such non-standard base pairing is
the base pairing between the modified nucleotide inosine and
adenine, cytosine or uracil.

The modified nucleosides and nucleotides can include a
modified nucleobase. Examples of nucleobases found in
RNA include, but are not limited to, adenine, guanine,
cytosine, and uracil. Examples of nucleobase found in DNA
include, but are not limited to, adenine, guanine, cytosine, and
thymine. These nucleobases can be modified or wholly
replaced to provide polynucleotides, primary constructs, or
mmRNA molecules having enhanced properties, e.g., resis-
tance to nucleases through disruption of the binding of a
major groove binding partner. Table 8 below identifies the
chemical faces of each canonical nucleotide. Circles identify
the atoms comprising the respective chemical regions.
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TABLE 8
Major Groove Minor Groove
Face Face
Pyrimidines Cytidine: NH,
2
Ny
N e}
0 l
Il O —P—0
O—P—0 N 0 | O
| 0 o
o
OH OH
OH OH
Uridine: O
NH
o NH 0
I A ol
O—P—0 N O | o)
| —@ O-
o
OH OH
Purines Adenosine: NH,
N =
i L
O—P—0O N
| O,
o
OH OH
Guanosine: O
N NH
i<
O—P—0 N
| 0.
o
OH OH
OH OH
Watson-Crick
Base-pairing
Face
Pyrimidines Cytidine:
e}
l
O —P—0O N
| O,
o

OH O
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TABLE 8-continued
Uridine:
I
O —P—0O N
| (0)
o
OH OH
Purines Adenosine:
N.
I ]
O —P—0 N
| 0 :
o
OH OH
Guanosine:
N
I {
O —P—0 N
| 0 :
o
OH OH
In some embodiments, B is a modified uracil. Exemplary -continued
modified uracils include those having Formula (b1)-(b5): 45 b3)
RIZC
RIO
(b1) Xy
BT |
>< R!2a, 50 ,
V! N~ RU N T,
I i
VZ
AN =
T
55
(b2) (b4)
RI% Rl
J\ R, 60 R
N| N | AN
N /K
R 0 \N O, or

>

65
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-continued
(b5)
O

12¢
/R ’

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein

“*: is a single or double bond;

eachof T¥, T'", T%, and T*"is, independently, H, optionally
substituted alkyl, optionally substituted alkoxy, or optionally
substituted thioalkoxy, or the combination of T' and T*" or
the combination of T* and T?" join together (e.g., as in T?) to
form O (0x0), S (thio), or Se (seleno);

each of V! and V? is, independently, O, S, N(R"®),,, or
C(R"),,,, wherein nv is an integer from 0 to 2 and each R is,
independently, H, halo, optionally substituted amino acid,
optionally substituted alkyl, optionally substituted haloalkyl,
optionally substituted alkenyl, optionally substituted alkynyl,
optionally substituted alkoxy, optionally substituted alkeny-
loxy, optionally substituted alkynyloxy, optionally substi-
tuted hydroxyalkyl, optionally substituted hydroxyalkenyl,
optionally substituted hydroxyalkynyl, optionally substituted
aminoalkyl (e.g., substituted with an N-protecting group,
such as any described herein, e.g., trifluoroacetyl), optionally
substituted aminoalkenyl, optionally substituted aminoalky-
nyl, optionally substituted acylaminoalkyl (e.g., substituted
with an N-protecting group, such as any described herein,
e.g., trifluoroacetyl), optionally substituted alkoxycarbonyla-
lkyl, optionally substituted alkoxycarbonylalkenyl, option-
ally substituted alkoxycarbonylalkynyl, or optionally substi-
tuted alkynyloxy (e.g., optionally substituted with any
substituent described herein, such as those selected from (1)-
(21) for alkyl);

R'? is H, halo, optionally substituted amino acid, hydroxy,
optionally substituted alkyl, optionally substituted alkenyl,
optionally substituted alkynyl, optionally substituted ami-
noalkyl, optionally substituted hydroxyalkyl, optionally sub-
stituted hydroxyalkenyl, optionally substituted hydroxyalky-
nyl, optionally substituted aminoalkenyl, optionally
substituted aminoalkynyl, optionally substituted alkoxy,
optionally substituted alkoxycarbonylalkyl, optionally sub-
stituted  alkoxycarbonylalkenyl, optionally substituted
alkoxycarbonylalkynyl, optionally substituted alkoxycarbo-
nylalkoxy, optionally substituted carboxyalkoxy, optionally
substituted carboxyalkyl, or optionally substituted carbam-
oylalkyl;

R'! is H or optionally substituted alkyl;

R4 is H, optionally substituted alkyl, optionally substi-
tuted hydroxyalkyl, optionally substituted hydroxyalkenyl,
optionally substituted hydroxyalkynyl, optionally substituted
aminoalkyl, optionally substituted aminoalkenyl, or option-
ally substituted aminoalkynyl, optionally substituted car-
boxyalkyl (e.g., optionally substituted with hydroxy), option-
ally substituted carboxyalkoxy, optionally substituted
carboxyaminoalkyl, or optionally substituted carbamoyla-
lkyl; and

R'?¢ is H, halo, optionally substituted alkyl, optionally
substituted alkoxy, optionally substituted thioalkoxy, option-
ally substituted amino, optionally substituted hydroxyalkyl,
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optionally substituted hydroxyalkenyl, optionally substituted
hydroxyalkynyl, optionally substituted aminoalkyl, option-
ally substituted aminoalkenyl, or optionally substituted ami-
noalkynyl.

Other exemplary modified uracils include those having
Formula (b6)-(b9):

(b6)

12
R4,

\

RIZC
J\N

3 >
I

=

Il

\WZ T
O\N\J[\IV\& L5
RIZC

12a
J\\ /R 4

*N

(67)

V3
Iu

=

T2

W{W

P
Rle ><
Sy N

AN

Il
S w2

(b8)

—
—

RlZa, or

-

T2 "
T2

(b9)
RIZC

A

~
/@

N N

o
=,

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein

*>x is a single or double bond;

eachof TV, T*", T?, and T*" is, independently, H, optionally
substituted alkyl, optionally substituted alkoxy, or optionally
substituted thioalkoxy, or the combination of T* and T join
together (e.g., as in T*) or the combination of T* and T*" join
together (e.g., as in T?) to form O (oxo0), S (thio), or Se
(seleno), or each T' and T? is, independently, O (oxo), S
(thio), or Se (seleno);

each of W' and W? is, independently, N(R"®), or
C(R") . whereinnw is an integer from 0 to 2 and each R”#
is, independently, H, optionally substituted alkyl, or option-
ally substituted alkoxy;

each V? is, independently, O, S, N(R"), or C(R™),,
wherein nv is an integer from O to 2 and each R is, indepen-
dently, H, halo, optionally substituted amino acid, optionally
substituted alkyl, optionally substituted hydroxyalkyl,
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optionally substituted hydroxyalkenyl, optionally substituted
hydroxyalkynyl, optionally substituted alkenyl, optionally
substituted alkynyl, optionally substituted heterocyclyl,
optionally substituted alkheterocyclyl, optionally substituted
alkoxy, optionally substituted alkenyloxy, or optionally sub-
stituted alkynyloxy, optionally substituted aminoalkyl (e.g.,
substituted with an N-protecting group, such as any described
herein, e.g., trifluoroacetyl, or sulfoalkyl), optionally substi-
tuted aminoalkenyl, optionally substituted aminoalkynyl,
optionally substituted acylaminoalkyl (e.g., substituted with
an N-protecting group, such as any described herein, e.g.,
trifluoroacetyl), optionally substituted alkoxycarbonylalkyl,
optionally substituted alkoxycarbonylalkenyl, optionally
substituted alkoxycarbonylalkynyl, optionally substituted
alkoxycarbonylacyl, optionally substituted alkoxycarbonyla-
Ikoxy, optionally substituted carboxyalkyl (e.g., optionally
substituted with hydroxy and/or an O-protecting group),
optionally substituted carboxyalkoxy, optionally substituted
carboxyaminoalkyl, or optionally substituted carbamoylalkyl
(e.g., optionally substituted with any substituent described
herein, such as those selected from (1)-(21) for alkyl), and
wherein R " and R'?° taken together with the carbon atoms to
which they are attached can form optionally substituted
cycloalkyl, optionally substituted aryl, or optionally substi-
tuted heterocyclyl (e.g., a 5- or 6-membered ring);

R'?% is H, optionally substituted alkyl, optionally substi-
tuted hydroxyalkyl, optionally substituted hydroxyalkenyl,
optionally substituted hydroxyalkynyl, optionally substituted
aminoalkyl, optionally substituted aminoalkenyl, optionally
substituted aminoalkynyl, optionally substituted carboxy-
alkyl (e.g., optionally substituted with hydroxy and/or an
O-protecting group), optionally substituted carboxyalkoxy,
optionally substituted carboxyaminoalkyl, optionally substi-
tuted carbamoylalkyl, or absent;

R'?? is H, optionally substituted alkyl, optionally substi-
tuted alkenyl, optionally substituted alkynyl, optionally sub-
stituted hydroxyalkyl, optionally substituted hydroxyalkenyl,
optionally substituted hydroxyalkynyl, optionally substituted
aminoalkyl, optionally substituted aminoalkenyl, optionally
substituted aminoalkynyl, optionally substituted alkaryl,
optionally substituted heterocyclyl, optionally substituted
alkheterocyclyl, optionally substituted amino acid, option-
ally substituted alkoxycarbonylacyl, optionally substituted
alkoxycarbonylalkoxy, optionally substituted alkoxycarbo-
nylalkyl, optionally substituted alkoxycarbonylalkenyl,
optionally substituted alkoxycarbonylalkynyl, optionally
substituted alkoxycarbonylalkoxy, optionally substituted car-
boxyalkyl (e.g., optionally substituted with hydroxy and/or
an O-protecting group), optionally substituted carboxy-
alkoxy, optionally substituted carboxyaminoalkyl, or option-
ally substituted carbamoylalkyl,

wherein the combination of R*?” and T*' or the combina-
tion of R'?* and R'** can join together to form optionally
substituted heterocyclyl; and

R'?¢ is H, halo, optionally substituted alkyl, optionally
substituted alkoxy, optionally substituted thioalkoxy, option-
ally substituted amino, optionally substituted aminoalkyl,
optionally substituted aminoalkenyl, or optionally substi-
tuted aminoalkynyl.

Further exemplary modified uracils include those having
Formula (b28)-(b31):
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(528)
(529)
Tl
RVb RlZa,
B
N/KTZ
(630)
Tl
12 12a
R\NJI\N/R > or
\ -
(631)
Tl
RVb' RlZa,
N/

or a pharmaceutically acceptable salt or stereoisomer thereof,

wherein

each of T' and T is, independently, O (oxo0), S (thio), or Se
(seleno);

each R"* and R"?” is, independently, H, halo, optionally
substituted amino acid, optionally substituted alkyl, option-
ally substituted haloalkyl, optionally substituted hydroxy-
alkyl, optionally substituted hydroxyalkenyl, optionally sub-
stituted hydroxyalkynyl, optionally substituted alkenyl,
optionally substituted alkynyl, optionally substituted alkoxy,
optionally substituted alkenyloxy, optionally substituted
alkynyloxy, optionally substituted aminoalkyl (e.g., substi-
tuted with an N-protecting group, such as any described
herein, e.g., trifluoroacetyl, or sulfoalkyl), optionally substi-
tuted aminoalkenyl, optionally substituted aminoalkynyl,
optionally substituted acylaminoalkyl (e.g., substituted with
an N-protecting group, such as any described herein, e.g.,
trifluoroacetyl), optionally substituted alkoxycarbonylalkyl,
optionally substituted alkoxycarbonylalkenyl, optionally
substituted alkoxycarbonylalkynyl, optionally substituted
alkoxycarbonylacyl, optionally substituted alkoxycarbonyla-
lkoxy, optionally substituted carboxyalkyl (e.g., optionally
substituted with hydroxy and/or an O-protecting group),
optionally substituted carboxyalkoxy, optionally substituted
carboxyaminoalkyl, or optionally substituted carbamoylalkyl
(e.g., optionally substituted with any substituent described
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herein, such as those selected from (1)-(21) for alkyl) (e.g.,
R"®’ is optionally substituted alkyl, optionally substituted
alkenyl, or optionally substituted aminoalkyl, e.g., substi-
tuted with an N-protecting group, such as any described
herein, e.g., trifluoroacetyl, or sulfoalkyl);

R'?% is H, optionally substituted alkyl, optionally substi-
tuted carboxyaminoalkyl, optionally substituted aminoalkyl
(e.g., e.g., substituted with an N-protecting group, such as any
described herein, e.g., trifluoroacetyl, or sulfoalkyl), option-
ally substituted aminoalkenyl, or optionally substituted ami-
noalkynyl; and

R'2? is H, optionally substituted alkyl, optionally substi-
tuted alkenyl, optionally substituted alkynyl, optionally sub-
stituted hydroxyalkyl, optionally substituted hydroxyalkenyl,
optionally substituted hydroxyalkynyl, optionally substituted
aminoalkyl, optionally substituted aminoalkenyl, optionally
substituted aminoalkynyl (e.g., e.g., substituted with an
N-protecting group, such as any described herein, e.g., trif-
Iuoroacetyl, or sulfoalkyl),

optionally substituted alkoxycarbonylacyl, optionally sub-
stituted  alkoxycarbonylalkoxy, optionally substituted
alkoxycarbonylalkyl, optionally substituted alkoxycarbony-
lalkenyl, optionally substituted alkoxycarbonylalkynyl,
optionally substituted alkoxycarbonylalkoxy, optionally sub-
stituted carboxyalkoxy, optionally substituted carboxyalkyl,
or optionally substituted carbamoylalkyl.

In particular embodiments, T* is O (ox0), and T? is S (thio)
or Se (seleno). In other embodiments, T* is S (thio), and T is
O (oxo0) or Se (seleno). In some embodiments, R**" is H,
optionally substituted alkyl, or optionally substituted alkoxy.

In other embodiments, each R'** and R'? is, indepen-
dently, H, optionally substituted alkyl, optionally substituted
alkenyl, optionally substituted alkynyl, or optionally substi-
tuted hydroxyalkyl. In particular embodiments, R'*“ is H. In
other embodiments, both R!2% and R*?? are H.

In some embodiments, each R”® of R'?? is, independently,
optionally substituted aminoalkyl (e.g., substituted with an
N-protecting group, such as any described herein, e.g., trif-
Iuoroacetyl, or sulfoalkyl), optionally substituted aminoalk-
enyl, optionally substituted aminoalkynyl, or optionally sub-
stituted acylaminoalkyl (e.g., substituted with an
N-protecting group, such as any described herein, e.g., trif-
luoroacetyl). In some embodiments, the amino and/or alkyl of
the optionally substituted aminoalkyl is substituted with one
or more of optionally substituted alkyl, optionally substituted
alkenyl, optionally substituted sulfoalkyl, optionally substi-
tuted carboxy (e.g., substituted with an O-protecting group),
optionally substituted hydroxy (e.g., substituted with an
O-protecting group), optionally substituted carboxyalkyl
(e.g., substituted with an O-protecting group), optionally sub-
stituted alkoxycarbonylalkyl (e.g., substituted with an O-pro-
tecting group), or N-protecting group. In some embodiments,
optionally substituted aminoalkyl is substituted with an
optionally substituted sulfoalkyl or optionally substituted
alkenyl. In particular embodiments, R*?* and R”*" are both H.
In particular embodiments, T* is O (0x0), and T? is S (thio) or
Se (seleno).

In some embodiments, R* is optionally substituted
alkoxycarbonylalkyl or optionally substituted carbamoyla-
Lkyl.

In particular embodiments, the optional substituent for
R'?% R'?? R'*¢ or R™ is a polyethylene glycol group (e.g.,
—(CH,),,(OCH,CH,),,(CH,),;OR', wherein sl is an integer
from 1 to 10 (e.g., from 1 to 6 or from 1 to 4), each of s2 and
s3, independently, is an integer from 0 to 10 (e.g., from O to 4,
from 0 to 6, from 1 to 4, from 1 to 6, or from 1 to 10), and R’
is H or C, 5, alkyl); or an amino-polyethylene glycol group
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(e.g., —NRM(CH,),,(CH,CH,0),,(CH,),NR™, wherein
sl is an integer from 1 to 10 (e.g., from 1 to 6 or from 1 to 4),
each of s2 and s3, independently, is an integer from 0 to 10
(e.g., from 0 to 4, from O to 6, from 1 to 4, from 1 to 6, or from
1 to 10), and each R™" is, independently, hydrogen or option-
ally substituted C,_ alkyl).

In some embodiments, B is a modified cytosine. Exem-
plary modified cytosines include compounds of Formula
(b10)-(b14):

(b10)

Rl3a Rl3b
N
R
(]
\I\I\I\+\I\I\& T3’
(b11)
RI3®
N
14 | 16
R N/R
RIS N/&Ty,

(b12)

(b13)

(b14)

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein

each of T* and T*" is, independently, H, optionally substi-
tuted alkyl, optionally substituted alkoxy, or optionally sub-
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stituted thioalkoxy, or the combination of T>" and T*" join
together (e.g., as in T%) to form O (oxo), S (thio), or Se
(seleno);

each V* is, independently, O, S, N(R™), , or C(R"®)
wherein nv is an integer from 0 to 2 and each R is, indepen-
dently, H, halo, optionally substituted amino acid, optionally
substituted alkyl, optionally substituted alkenyl, optionally
substituted alkynyl, optionally substituted alkoxy, optionally
substituted alkenyloxy, optionally substituted heterocyclyl,
optionally substituted alkheterocyclyl, or optionally substi-
tuted alkynyloxy (e.g., optionally substituted with any sub-
stituent described herein, such as those selected from (1)-(21)
for alkyl), wherein the combination of R'3* and R” can be
taken together to form optionally substituted heterocyclyl;

each V* is, independently, N(R"), , or C(R”),, wherein
nv is an integer from 0 to 2 and each R*“ is, independently, H,
halo, optionally substituted amino acid, optionally substi-
tuted alkyl, optionally substituted alkenyl, optionally substi-
tuted alkynyl, optionally substituted alkoxy, optionally sub-
stituted alkenyloxy, optionally substituted heterocyclyl,
optionally substituted alkheterocyclyl, or optionally substi-
tuted alkynyloxy (e.g., optionally substituted with any sub-
stituent described herein, such as those selected from (1)-(21)
for alkyl) (e.g., V° is —CH or N);

each of R'** and R'*” is, independently, H, optionally sub-
stituted acyl, optionally substituted acyloxyalkyl, optionally
substituted alkyl, or optionally substituted alkoxy, wherein
the combination of R**” and R'“ can be taken together to form
optionally substituted heterocyclyl;

vy

v

each R'*is, independently, H, halo, hydroxy, thiol, option-
ally substituted acyl, optionally substituted amino acid,
optionally substituted alkyl, optionally substituted haloalkyl,
optionally substituted alkenyl, optionally substituted alkynyl,
optionally substituted hydroxyalkyl (e.g., substituted with an
O-protecting group), optionally substituted hydroxyalkenyl,
optionally substituted hydroxyalkynyl, optionally substituted
alkoxy, optionally substituted alkenyloxy, optionally substi-
tuted alkynyloxy, optionally substituted aminoalkoxy,
optionally substituted alkoxyalkoxy, optionally substituted
acyloxyalkyl, optionally substituted amino (e.g., —NHR,
wherein R is H, alkyl, aryl, or phosphoryl), azido, optionally
substituted aryl, optionally substituted heterocyclyl, option-
ally substituted alkheterocyclyl, optionally substituted ami-
noalkyl, optionally substituted aminoalkenyl, or optionally
substituted aminoalkyl; and

each of R*® and R*® is, independently, H, optionally sub-
stituted alkyl, optionally substituted alkenyl, or optionally
substituted alkynyl.

Further exemplary modified cytosines include those hav-
ing Formula (b32)-(b35):

(b32)
Rlda e
\N/

Xy

LA

RIS N

W{W

T3
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-continued
(b33)
135
/R

(b34)

1

g
\N N
| R34 or
\ N/ f
|
Rl3b

Rl3a
~ N
14

RIS N
or a pharmaceutically acceptable salt or stereoisomer thereof,

wherein

each of T' and T° is, independently, O (oxo0), S (thio), or Se
(seleno);

each of R'** and R*” is, independently, H, optionally sub-
stituted acyl, optionally substituted acyloxyalkyl, optionally
substituted alkyl, or optionally substituted alkoxy, wherein
the combination of R**” and R*“ can be taken together to form
optionally substituted heterocyclyl;

each R'*is, independently, H, halo, hydroxy, thiol, option-
ally substituted acyl, optionally substituted amino acid,
optionally substituted alkyl, optionally substituted haloalkyl,
optionally substituted alkenyl, optionally substituted alkynyl,
optionally substituted hydroxyalkyl (e.g., substituted with an
O-protecting group), optionally substituted hydroxyalkenyl,
optionally substituted hydroxyalkynyl, optionally substituted
alkoxy, optionally substituted alkenyloxy, optionally substi-
tuted alkynyloxy, optionally substituted aminoalkoxy,
optionally substituted alkoxyalkoxy, optionally substituted
acyloxyalkyl, optionally substituted amino (e.g., —NHR,
wherein R is H, alkyl, aryl, or phosphoryl), azido, optionally
substituted aryl, optionally substituted heterocyclyl, option-
ally substituted alkheterocyclyl, optionally substituted ami-
noalkyl (e.g., hydroxyalkyl, alkyl, alkenyl, or alkynyl),
optionally substituted aminoalkenyl, or optionally substi-
tuted aminoalkynyl; and

each of R'® and R*® is, independently, H, optionally sub-
stituted alkyl, optionally substituted alkenyl, or optionally
substituted alkynyl (e.g., R"® is H, and R'°is H or optionally
substituted alkyl).

In some embodiments, R'® is H, and R*® is H or optionally
substituted alkyl. In particular embodiments, R'*is H, acyl, or

hydroxyalkyl. In some embodiments, R'* is halo. In some
embodiments, both R'* and R'* are H. In some embodiments,

" (635
AR
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both R'® and R' are H. In some embodiments, each of R**
and R'® and R!¢ is H. In further embodiments, each of R!3¢
and R'?? is independently, H or optionally substituted alkyl.

Further non-limiting examples of modified cytosines
include compounds of Formula (b36):

5 (b36)
R
N/
Rl4a |
[0
RIS N)\ R4

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein

each R**” is, independently, H, optionally substituted acyl,
optionally substituted acyloxyalkyl, optionally substituted
alkyl, or optionally substituted alkoxy, wherein the combina-
tion of R'*? and R'*” can be taken together to form optionally
substituted heterocyclyl;

each R'* and R'** is, independently, H, halo, hydroxy,
thiol, optionally substituted acyl, optionally substituted
amino acid, optionally substituted alkyl, optionally substi-
tuted haloalkyl, optionally substituted alkenyl, optionally
substituted alkynyl, optionally substituted hydroxyalkyl
(e.g., substituted with an O-protecting group), optionally sub-
stituted hydroxyalkenyl, optionally substituted alkoxy,
optionally substituted alkenyloxy, optionally substituted
alkynyloxy, optionally substituted aminoalkoxy, optionally
substituted alkoxyalkoxy, optionally substituted acyloxy-
alkyl, optionally substituted amino (e.g., —NHR, wherein R
is H, alkyl, aryl, phosphoryl, optionally substituted ami-
noalkyl, or optionally substituted carboxyaminoalkyl), azido,
optionally substituted aryl, optionally substituted heterocy-
clyl, optionally substituted alkheterocyclyl, optionally sub-
stituted aminoalkyl, optionally substituted aminoalkenyl, or
optionally substituted aminoalkynyl; and

each of R'® is, independently, H, optionally substituted
alkyl, optionally substituted alkenyl, or optionally substituted
alkynyl.

In particular embodiments, R*** is an optionally substi-

tuted amino acid (e.g., optionally substituted lysine). In some
embodiments, R***is H.

In some embodiments, B is a modified guanine Exemplary
modified guanines include compounds of Formula (b15)-
(b17):

(b15)
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-continued

(b16)
T

T R23
N.
N
R21_</ ﬁ\/g—l{m’ or
-
N N N
|

™ 1
18
N N/R
Rl7 / |
< ™
N Il\I T6'

or a pharmaceutically acceptable salt or stereoisomer thereof,

(b17)

wherein

each of T*, T*', T, T, T%, and T¢" is, independently, H,
optionally substituted alkyl, or optionally substituted alkoxy,
and wherein the combination of T* and T*" (e.g., as in T*) or
the combination of T> and T*" (e.g., as in T°) or the combi-
nation of T® and T%" (e.g., as in T®) join together form O
(ox0), S (thio), or Se (seleno);

each of V° and V° is, independently, O, S, N(R"),,, or
C(R"®),,, wherein nv is an integer from O to 2 and each R"“ s,
independently, H, halo, thiol, optionally substituted amino
acid, cyano, amidine, optionally substituted aminoalkyl,
optionally substituted aminoalkenyl, optionally substituted
aminoalkynyl, optionally substituted alkyl, optionally substi-
tuted alkenyl, optionally substituted alkynyl, optionally sub-
stituted alkoxy, optionally substituted alkenyloxy, or option-
ally substituted alkynyloxy (e.g., optionally substituted with
any substituent described herein, such as those selected from
(1)-(21) for alkyl), optionally substituted thioalkoxy, or
optionally substituted amino; and

each of R!7, R*®, R'? R'%? R?! R?2, R?*, and R** is,
independently, H, halo, thiol, optionally substituted alkyl,
optionally substituted alkenyl, optionally substituted alkynyl,
optionally substituted thioalkoxy, optionally substituted
amino, or optionally substituted amino acid.

Exemplary modified guanosines include compounds of
Formula (b37)-(b40):

(b37)

R19b

T4
RIS
N -
N
{ ﬁ
= R19a,
N N Il\j/
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-continued
(b38)
™
N
(T
)\ R
N N Il\l/
M/+/\/\} ngb
(b39)
T4
RIS
4 | N7
N N/I\N/nga’ or
(b40)
T4
18
N N/R
Rr2! </ | /I\
/ R19a,
N N I|\I/

or a pharmaceutically acceptable salt or stereoisomer thereof,
wherein

each of T* is, independently, H, optionally substituted
alkyl, or optionally substituted alkoxy, and each T* is, inde-
pendently, O (oxo), S (thio), or Se (seleno);

each of R'®, R'°% R'%? and R?! is, independently, H, halo,
thiol, optionally substituted alkyl, optionally substituted alk-
enyl, optionally substituted alkynyl, optionally substituted
thioalkoxy, optionally substituted amino, or optionally sub-
stituted amino acid.

In some embodiments, R'® is H or optionally substituted
alkyl. In further embodiments, T* is oxo. In some embodi-
ments, each of R'* and R'*? is, independently, H or option-
ally substituted alkyl.

In some embodiments, B is a modified adenine. Exemplary
modified adenines include compounds of Formula (b18)-
(b20):

(b18)

R26a R26b
N

N

Xy

R25< | N)\

M%W

27
R,
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-continued
s (b19)
R
|
7 R
J Y
L
Z
N RY, or
N (620)
R

W EN
R </ | )N\
N N/

27
R,

or a pharmaceutically acceptable salt or stereoisomer thereof,

wherein

each V7 is, independently, O, S, N(R"),,, or CR"),,,,
wherein nv is an integer from 0 to 2 and each R" is, indepen-
dently, H, halo, optionally substituted amino acid, optionally
substituted alkyl, optionally substituted alkenyl, optionally
substituted alkynyl, optionally substituted alkoxy, optionally
substituted alkenyloxy, or optionally substituted alkynyloxy
(e.g., optionally substituted with any substituent described
herein, such as those selected from (1)-(21) for alkyl);

each R? is, independently, H, halo, thiol, optionally sub-
stituted alkyl, optionally substituted alkenyl, optionally sub-
stituted alkynyl, optionally substituted thioalkoxy, or option-
ally substituted amino;

each of R?** and R’ is, independently, H, optionally sub-
stituted acyl, optionally substituted amino acid, optionally
substituted carbamoylalkyl, optionally substituted alkyl,
optionally substituted alkenyl, optionally substituted alkynyl,
optionally substituted hydroxyalkyl, optionally substituted
hydroxyalkenyl, optionally substituted hydroxyalkynyl,
optionally substituted alkoxy, or polyethylene glycol group
(e.g., —(CH,),,(OCH,CH,),, (CH,),;OR', wherein sl is an
integer from 1 to 10 (e.g., from 1 to 6 or from 1 to 4), each of
s2 and 53, independently, is an integer from 0to 10 (e.g., from
0to 4, from 0 to 6, from 1 to 4, from 1 to 6, or from 1 to 10),
and R'is H or C, _,, alkyl); or an amino-polyethylene glycol
group (e.g., —NRY!(CH,),,(CH,CH,0),,(CH,)sNRY,
wherein s1 is an integer from 1 to 10 (e.g., from 1 to 6 or from
1to 4), each of s2 and s3, independently, is an integer from 0
to 10 (e.g., from O to 4, from O to 6, from 1 to 4, from 1 to 6,
or from 1 to 10), and each R™" is, independently, hydrogen or
optionally substituted C, 4 alkyl);

each R?” is, independently, H, optionally substituted alkyl,
optionally substituted alkenyl, optionally substituted alkynyl,
optionally substituted alkoxy, optionally substituted thio-
alkoxy or optionally substituted amino;

each R?® is, independently, H, optionally substituted alkyl,
optionally substituted alkenyl, or optionally substituted alky-
nyl; and

each R* is, independently, H, optionally substituted acyl,
optionally substituted amino acid, optionally substituted car-
bamoylalkyl, optionally substituted alkyl, optionally substi-
tuted alkenyl, optionally substituted alkynyl, optionally sub-
stituted hydroxyalkyl, optionally substituted hydroxyalkenyl,
optionally substituted alkoxy, or optionally substituted
amino.
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Exemplary modified adenines include compounds of For-
mula (b41)-(b43):

(b41)
26a
R ~

al
W{W

26a
LA

26b
/R

SN

A

27
R,

(b42)

/stb, or

N
N X
N
st_</ | )
P
N N

MJFW

26a
LA

(b43)
stb,
N
N x
N

{ ]

J
N

N

NJFW

or a pharmaceutically acceptable salt or stereoisomer thereof,

wherein

each R?* is, independently, H, halo, thiol, optionally sub-
stituted alkyl, optionally substituted alkenyl, optionally sub-
stituted alkynyl, optionally substituted thioalkoxy, or option-
ally substituted amino;

each of R*** and R?*” is, independently, H, optionally sub-
stituted acyl, optionally substituted amino acid, optionally
substituted carbamoylalkyl, optionally substituted alkyl,
optionally substituted alkenyl, optionally substituted alkynyl,
optionally substituted hydroxyalkyl, optionally substituted
hydroxyalkenyl, optionally substituted hydroxyalkynyl,
optionally substituted alkoxy, or polyethylene glycol group
(e.g., —(CH,),,(OCH,CH,),, (CH,),;OR', wherein sl is an
integer from 1 to 10 (e.g., from 1 to 6 or from 1 to 4), each of
s2 and s3, independently, is an integer from 0to 10 (e.g., from
0to 4, from O to 6, from 1 to 4, from 1 to 6, or from 1 to 10),
and R'is H or C, _,, alkyl); or an amino-polyethylene glycol
group (e.g, —NRY(CH,),(CH,CH,0),,(CH,);NR™,
wherein sl is an integer from 1 to 10 (e.g., from 1 to 6 or from
1to 4), each of s2 and s3, independently, is an integer from 0
to 10 (e.g., from O to 4, from O to 6, from 1 to 4, from 1 to 6,
or from 1 to 10), and each R is, independently, hydrogen or
optionally substituted C, 4 alkyl); and

each R*’ is, independently, H, optionally substituted alkyl,
optionally substituted alkenyl, optionally substituted alkynyl,
optionally substituted alkoxy, optionally substituted thio-
alkoxy, or optionally substituted amino.

In some embodiments, R>%¢ is H, and R?%” is optionally
substituted alkyl. In some embodiments, each of R*** and
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R?*? is, independently, optionally substituted alkyl. In par-
ticular embodiments, R*>” is optionally substituted alkyl,
optionally substituted alkoxy, or optionally substituted thio-
alkoxy. In other embodiments, R* is optionally substituted
alkyl, optionally substituted alkoxy, or optionally substituted
thioalkoxy.

In particular embodiments, the optional substituent for
R?%¢ R?%®_ or R* is a polyethylene glycol group (e.g.,
—(CH,),,(OCH,CH,),, (CH,),;OR', whereins1 is an integer
from 1 to 10 (e.g., from 1 to 6 or from 1 to 4), each of s2 and
s3, independently, is an integer from 0 to 10 (e.g., from O to 4,
from 0 to 6, from 1 to 4, from 1 to 6, or from 1 to 10), and R’
is H or C, 5, alkyl); or an amino-polyethylene glycol group
(e.g., —NRM(CH,),,(CH,CH,0),,(CH,),NR™, wherein
sl is an integer from 1 to 10 (e.g., from 1 to 6 or from 1 to 4),
each of s2 and s3, independently, is an integer from 0 to 10
(e.g., from 0 to 4, from O to 6, from 1 to 4, from 1 to 6, or from
1 to 10), and each R™" is, independently, hydrogen or option-
ally substituted C,_ alkyl).

In some embodiments, B may have Formula (b21):

(b21)

xa XIZ
RlZa,
N N
\ TZ

wherein X' is, independently, O, S, optionally substituted
alkylene (e.g., methylene), or optionally substituted het-
eroalkylene, xa is an integer from 0 to 3, and R'?“ and T> are
as described herein.

In some embodiments, B may have Formula (b22):

(b22)

wherein R'? is, independently, optionally substituted alkyl,
optionally substituted alkenyl, optionally substituted alkynyl,
optionally substituted aryl, optionally substituted heterocy-
clyl, optionally substituted aminoalkyl, optionally substi-
tuted aminoalkenyl, optionally substituted aminoalkynyl,
optionally substituted alkoxy, optionally substituted alkoxy-
carbonylalkyl, optionally substituted alkoxycarbonylalkenyl,
optionally substituted alkoxycarbonylalkynyl, optionally
substituted alkoxycarbonylalkoxy, optionally substituted car-
boxyalkoxy, optionally substituted carboxyalkyl, or option-
ally substituted carbamoylalkyl, and R**, R*?%, T* and T> are
as described herein.
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In some embodiments, B may have Formula (b23):

(b23)
Tl

122
R,

wherein R'® is optionally substituted heterocyclyl (e.g.,
optionally substituted furyl, optionally substituted thienyl, or
optionally substituted pyrrolyl), optionally substituted aryl
(e.g., optionally substituted phenyl or optionally substituted
naphthyl), or any substituent described herein (e.g., for R'°);
and wherein R*! (e.g., H or any substituent described herein),
R'?% (e.g., H or any substituent described herein), T' (e.g.,
0xo or any substituent described herein), and T2 (e.g., oxo or
any substituent described herein) are as described herein.

In some embodiments, B may have Formula (b24):

(b24)
Rl3a Rl3b
0 N
14
R N N N

RIS N T,
wherein R'* is, independently, optionally substituted alkyl,
optionally substituted alkenyl, optionally substituted alkynyl,

optionally substituted aryl, optionally substituted heterocy-
clyl, optionally substituted alkaryl, optionally substituted
alkheterocyclyl, optionally substituted aminoalkyl, option-
ally substituted aminoalkenyl, optionally substituted ami-
noalkynyl, optionally substituted alkoxy, optionally substi-
tuted  alkoxycarbonylalkenyl, optionally  substituted
alkoxycarbonylalkynyl, optionally substituted alkoxycarbo-
nylalkyl, optionally substituted alkoxycarbonylalkoxy,
optionally substituted carboxyalkoxy, optionally substituted
carboxyalkyl, or optionally substituted carbamoylalkyl, and
R3e R13% RS and T3 are as described herein.
In some embodiments, B may have Formula (b25):

(b25)
13a
R g

LA

R N

135
/R

RM,/\

=z
/
z

T3

wherein R'* is optionally substituted heterocyclyl (e.g.,
optionally substituted furyl, optionally substituted thienyl, or
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optionally substituted pyrrolyl), optionally substituted aryl
(e.g., optionally substituted phenyl or optionally substituted
naphthyl), or any substituent described herein (e.g., for R** or
R'*); and wherein R'*“ (e.g., H or any substituent described
herein), R'*? (e.g., H or any substituent described herein), R*®
(e.g., H or any substituent described herein), and T* (e.g., oxo
or any substituent described herein) are as described herein.

In some embodiments, B is a nucleobase selected from the
group consisting of cytosine, guanine, adenine, and uracil. In
some embodiments, B may be:

(626)
YN\ N~
</N | \)N or
(627)
NH,
o
N0

a

In some embodiments, the modified nucleobase is a modi-
fied uracil. Exemplary nucleobases and nucleosides having a
modified uracil include pseudouridine (), pyridin-4-one
ribonucleoside, 5-aza-uridine, 6-aza-uridine, 2-thio-5-aza-
uridine, 2-thio-uridine (s*U), 4-thio-uridine (s*U), 4-thio-
pseudouridine, 2-thio-pseudouridine, 5-hydroxy-uridine
(ho®U), 5-aminoallyl-uridine, 5-halo-uridine (e.g., 5-iodo-
uridine or 5-bromo-uridine), 3-methyl-uridine (m*U),
5-methoxy-uridine (mo°U), uridine 5-oxyacetic acid
(cmo’U), uridine 5-oxyacetic acid methyl ester (mcmo’U),
5-carboxymethyl-uridine (cm’U), 1-carboxymethyl-
pseudouridine, 5-carboxyhydroxymethyl-uridine (chm®U),
5-carboxyhydroxymethyl-uridine methyl ester (mchm’U),
5-methoxycarbonylmethyl-uridine (mcm®U), 5-methoxycar-
bonylmethyl-2-thio-uridine (mcm’®s*U), 5-aminomethyl-2-

thio-uridine  (am’®s*U),  5-methylaminomethyl-uridine
(mnm’U), 5-methylaminomethyl-2-thio-uridine
(mnm’s*U), 5-methylaminomethyl-2-seleno-uridine

(mnm®se’U), 5-carbamoylmethyl-uridine (ncm’U), 5-car-
boxymethylaminomethyl-uridine (cmnm®U), 5-carboxym-
ethylaminomethyl-2-thio-uridine (cmnm?®s*U), 5-propynyl-
uridine, 1-propynyl-pseudouridine, 5-taurinomethyl-uridine
(tm°U), 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2-
thio-uridine (tm’s*U), 1-taurinomethyl-4-thio-pseudouri-
dine, 5-methyl-uridine (m’U, i.e., having the nucleobase
deoxythymine), 1-methylpseudouridine (m'1), 5-methyl-2-
thio-uridine ~ (m®s*U), 1-methyl-4-thio-pseudouridine
(m's*y), 4-thio-1-methyl-pseudouridine, 3-methyl-
pseudouridine (m>y), 2-thio-1-methyl-pseudouridine, 1-me-
thyl-1-deaza-pseudouridine, 2-thio-1-methyl-1-deaza-
pseudouridine, dihydrouridine (D), dihydropseudouridine,
5,6-dihydrouridine, 5-methyl-dihydrouridine (m’D), 2-thio-
dihydrouridine, 2-thio-dihydropseudouridine, 2-methoxy-
uridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouri-
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dine, 4-methoxy-2-thio-pseudouridine, N1-methyl-
pseudouridine (also known as 1-methylpseudouridine
(m')), 3-(3-amino-3-carboxypropyl)uridine (acp®U), 1-me-
thyl-3-(3-amino-3-carboxypropyl)pseudouridine  (acp®y),
5-(isopentenylaminomethyl)uridine (inm>U), 5-(isopenteny-
laminomethyl)-2-thio-uridine (inm®s*U), a-thio-uridine,
2'-O-methyl-uridine (Um), 5,2'-O-dimethyl-uridine (m*Um),
2'-O-methyl-pseudouridine (ym), 2-thio-2'-O-methyl-uri-
dine (s*Um), S5-methoxycarbonylmethyl-2'-O-methyl-uri-
dine (mcm®Um), 5-carbamoylmethyl-2'-B-methyl-uridine
(ncm®Um), 5-carboxymethylaminomethyl-2'-O-methyl-uri-
dine (cmnm’®Um), 3,2'-O-dimethyl-uridine (m*Um), 5-(iso-
pentenylaminomethyl)-2'--methyl-uridine (inm*Um),
1-thio-uridine, deoxythymidine, 2'-F-ara-uridine, 2'-F-uri-
dine, 2'-OH-ara-uridine, 5-(2-carbomethoxyvinyl)uridine,
and 5-[3-(1-E-propenylamino)uridine.

In some embodiments, the modified nucleobase is a modi-
fied cytosine. Exemplary nucleobases and nucleosides having
a modified cytosine include 5-aza-cytidine, 6-aza-cytidine,
pseudoisocytidine, 3-methyl-cytidine (m>C), N4-acetyl-cyti-
dine (ac*C), 5-formyl-cytidine (f°C), N4-methyl-cytidine
(m*C), 5-methyl-cytidine (m>C), S5-halo-cytidine (e.g.,
5-iodo-cytidine), 5-hydroxymethyl-cytidine (hm>C), 1-me-
thyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoiso-
cytidine, 2-thio-cytidine (s°C), 2-thio-5-methyl-cytidine,
4-thio-pseudoisocytidine,  4-thio-1-methyl-pseudoisocyti-
dine, 4-thio-1-methyl-1-deaza-pseudoisocytidine, 1-methyl-
1-deaza-pseudoisocytidine, zebularine, S5-aza-zebularine,
5-methyl-zebularine, 5-aza-2-thio-zebularine, 2-thio-zebu-
larine, 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine,
4-methoxy-pseudoisocytidine, 4-methoxy-1-methyl-
pseudoisocytidine, lysidine (k2C), a-thio-cytidine, 2'-O-me-
thyl-cytidine (Cm), 5,2'-O-dimethyl-cytidine (m’Cm),
N4-acetyl-2'-O-methyl-cytidine  (ac*Cm), N4,2'-O-dim-
ethyl-cytidine (m*Cm), 5-formyl-2'-O-methyl-cytidine
(f°Cm), N4,N4,2'-O-trimethyl-cytidine (m*,Cm), 1-thio-cy-
tidine, 2'-F-ara-cytidine, 2'-F-cytidine, and 2'-OH-ara-cyti-
dine.

In some embodiments, the modified nucleobase is a modi-
fied adenine. Exemplary nucleobases and nucleosides having
a modified adenine include 2-amino-purine, 2,6-diaminopu-
rine, 2-amino-6-halo-purine (e.g., 2-amino-6-chloro-purine),
6-halo-purine (e.g., 6-chloro-purine), 2-amino-6-methyl-pu-
rine, 8-azido-adenosine, 7-deaza-adenine, 7-deaza-8-aza-ad-
enine, 7-deaza-2-amino-purine, 7-deaza-8-aza-2-amino-pu-
rine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-
diaminopurine, 1-methyl-adenosine (m'A), 2-methyl-
adenine (m*A), N6-methyl-adenosine (m°A), 2-methylthio-
N6-methyl-adenosine (ms® m®A), N6-isopentenyl-adenosine
(i°A), 2-methylthio-N6-isopentenyl-adenosine (msZi®A),
N6-(cis-hydroxyisopentenyl)adenosine  (i0°A),  2-meth-
ylthio-N6-(cis-hydroxyisopentenyl)adenosine ~ (ms*io%A),
N6-glycinylcarbamoyl-adenosine (g°A), N6-threonylcar-
bamoyl-adenosine (t°A), N6-methyl-N6-threonylcarbamoyl-
adenosine (m°t°A), 2-methylthio-N6-threonylcarbamoyl-ad-
enosine (ms®gfA), N6,N6-dimethyl-adenosine (m®,A),
N6-hydroxynorvalylcarbamoyl-adenosine (hn°A), 2-meth-
ylthio-N6-hydroxynorvalylcarbamoyl-adenosine
(ms*hn®A), N6-acetyl-adenosine (ac®A), 7-methyl-adenine,
2-methylthio-adenine, 2-methoxy-adenine, c-thio-adenos-
ine, 2'-O-methyl-adenosine (Am), N6,2'-O-dimethyl-ad-
enosine (m®Am), N6,N6,2'-O-trimethyl-adenosine (m°,
Am), 1,2'-O-dimethyl-adenosine (m'Am), 2'-O-ribosylad-
enosine (phosphate) (Ar(p)), 2-amino-N6-methyl-purine,
1-thio-adenosine, 8-azido-adenosine, 2'-F-ara-adenosine,
2'-F-adenosine, 2'-OH-ara-adenosine, and N6-(19-amino-
pentaoxanonadecyl)-adenosine.

In some embodiments, the modified nucleobase is a modi-
fied guanine Exemplary nucleobases and nucleosides having
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a modified guanine include inosine (I), 1-methyl-inosine
(m'D), wyosine (imG), methylwyosine (mimG), 4-demethyl-
wyosine (imG-14), isowyosine (imG2), wybutosine (yW),
peroxywybutosine (0,yW), hydroxywybutosine (OHyW),
undermodified hydroxywybutosine (OHyW*), 7-deaza-gua-
nosine, queuosine (Q), epoxyqueuosine (0Q), galactosyl-
queuosine (galQQ), mannosyl-queuosine (manQQ), 7-cyano-7-
deaza-guanosine (preQy), 7-aminomethyl-7-deaza-
guanosine (preQ,), archaeosine (G*), 7-deaza-8-aza-
guanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine,
6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine
(m’G),  6-thio-7-methyl-guanosine,  7-methyl-inosine,
6-methoxy-guanosine, 1-methyl-guanosine (m'G), N2-me-
thyl-guanosine (m*G), N2,N2-dimethyl-guanosine (m>,G),
N2,7-dimethyl-guanosine (m*’G), N2, N2,7-dimethyl-gua-
nosine (m*>*’G), 8-oxo-guanosine, 7-methyl-8-oxo-gua-
nosine, 1-methyl-6-thio-guanosine, N2-methyl-6-thio-gua-
nosine, N2,N2-dimethyl-6-thio-guanosine, a-thio-
guanosine, 2'-O-methyl-guanosine (Gm), N2-methyl-2'-O-
methyl-guanosine (m”*Gm), N2,N2-dimethyl-2'-O-methyl-
guanosine  (m?,Gm), 1-methyl-2'-O-methyl-guanosine
(m'Gm), N2,7-dimethyl-2'-O-methyl-guanosine (m*’Gm),
2'-O-methyl-inosine (Im), 1,2'-O-dimethyl-inosine (m'Im),
and 2'-O-ribosylguanosine (phosphate) (Gr(p)).

The nucleobase of the nucleotide can be independently
selected from a purine, a pyrimidine, a purine or pyrimidine
analog. For example, the nucleobase can each be indepen-
dently selected from adenine, cytosine, guanine, uracil, or
hypoxanthine. In another embodiment, the nucleobase can
also include, for example, naturally-occurring and synthetic
derivatives of a base, including pyrazolo[3,4-d|pyrimidines,
5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xan-
thine, hypoxanthine, 2-aminoadenine, 6-methyl and other
alkyl derivatives of adenine and guanine, 2-propyl and other
alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thio-
thymine and 2-thiocytosine, S-propynyl uracil and cytosine,
6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil),
4-thiouracil, 8-halo (e.g., 8-bromo), 8-amino, 8-thiol, 8-thio-
alkyl, 8-hydroxyl and other 8-substituted adenines and gua-
nines, 5-halo particularly 5-bromo, 5-trifftuoromethyl and
other 5S-substituted uracils and cytosines, 7-methylguanine
and 7-methyladenine, 8-azaguanine and 8-azaadenine, dea-
zaguanine, 7-deazaguanine, 3-deazaguanine, deazaadenine,
7-deazaadenine, 3-deazaadenine, pyrazolo[3,4-d|pyrimi-
dine, imidazo[1,5-a]1,3,5 triazinones, 9-deazapurines, imi-
dazo[4,5-d]pyrazines, thiazolo[4,5-d]pyrimidines, pyrazin-
2-ones, 1,2.4-triazine, pyridazine; and 1,3,5 triazine. When
the nucleotides are depicted using the shorthand A, G, C, T or
U, each letter refers to the representative base and/or deriva-
tives thereof, e.g., A includes adenine or adenine analogs,
e.g., 7-deaza adenine).

Modifications on the Internucleoside Linkage

The modified nucleotides, which may be incorporated into
a polynucleotide, primary construct, or mmRNA molecule,
can be modified on the internucleoside linkage (e.g., phos-
phate backbone). Herein, in the context of the polynucleotide
backbone, the phrases “phosphate” and “phosphodiester” are
used interchangeably. Backbone phosphate groups can be
modified by replacing one or more of the oxygen atoms with
a different substituent. Further, the modified nucleosides and
nucleotides can include the wholesale replacement of an
unmodified phosphate moiety with another internucleoside
linkage as described herein. Examples of modified phosphate
groups include, but are not limited to, phosphorothioate,
phosphoroselenates, boranophosphates, boranophosphate
esters, hydrogen phosphonates, phosphoramidates, phospho-
rodiamidates, alkyl or aryl phosphonates, and phosphotri-
esters. Phosphorodithioates have both non-linking oxygens
replaced by sulfur. The phosphate linker can also be modified
by the replacement of a linking oxygen with nitrogen
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(bridged phosphoramidates), sulfur (bridged phosphorothio-
ates), and carbon (bridged methylene-phosphonates).

The a-thio substituted phosphate moiety is provided to
confer stability to RNA and DNA polymers through the
unnatural phosphorothioate backbone linkages. Phospho-
rothioate DNA and RNA have increased nuclease resistance
and subsequently a longer half-life in a cellular environment.
Phosphorothioate linked polynucleotides, primary con-
structs, or mmRNA molecules are expected to also reduce the
innate immune response through weaker binding/activation
of cellular innate immune molecules.

In specific embodiments, a modified nucleoside includes
an alpha-thio-nucleoside (e.g., 5'-O-(1-thiophosphate)-ad-
enosine, 5'-O-(1-thiophosphate)-cytidine a-thio-cytidine),
5'-O-(1-thiophosphate)-guanosine, 5'-O-(1-thiophosphate)-
uridine, or 5'-O-(1-thiophosphate)-pseudouridine).

Other internucleoside linkages that may be employed
according to the present invention, including internucleoside
linkages which do not contain a phosphorous atom, are
described herein below.

Combinations of Modified Sugars, Nucleobases, and Inter-
nucleoside Linkages

The polynucleotides, primary constructs, and mmRNA of
the invention can include a combination of modifications to
the sugar, the nucleobase, and/or the internucleoside linkage.
These combinations can include any one or more modifica-
tions described herein. For examples, any of the nucleotides
described herein in Formulas (Ia), (Ia-1)-(Ia-3), (Ib)-(If),
(ITa)-(Ilp), (IIb-1), (IIb-2), (Hc-1)-(Tlc-2), (1In-1), (IIn-2),
(IVa)-(IV1), and (IXa)-(IXr) can be combined with any of the
nucleobases described herein (e.g., in Formulas (b1)-(b43) or
any other described herein).

Synthesis of Polypeptides, Primary Constructs, and mmRNA
Molecules

The polypeptides, primary constructs, and mmRNA mol-
ecules for use in accordance with the invention may be pre-
pared according to any useful technique, as described herein.
The modified nucleosides and nucleotides used in the synthe-
sis of polynucleotides, primary constructs, and mmRNA mol-
ecules disclosed herein can be prepared from readily avail-
able starting materials using the following general methods
and procedures. Where typical or preferred process condi-
tions (e.g., reaction temperatures, times, mole ratios of reac-
tants, solvents, pressures, etc.) are provided, a skilled artisan
would be able to optimize and develop additional process
conditions. Optimum reaction conditions may vary with the
particular reactants or solvent used, but such conditions can
be determined by one skilled in the art by routine optimization
procedures.

The processes described herein can be monitored accord-
ing to any suitable method known in the art. For example,
product formation can be monitored by spectroscopic means,
such as nuclear magnetic resonance spectroscopy (e.g., 'H or
13C) infrared spectroscopy, spectrophotometry (e.g., UV-vis-
ible), or mass spectrometry, or by chromatography such as
high performance liquid chromatography (HPLC) or thin
layer chromatography.

Preparation of polypeptides, primary constructs, and
mmRNA molecules of the present invention can involve the
protection and deprotection of various chemical groups. The
need for protection and deprotection, and the selection of
appropriate protecting groups can be readily determined by
one skilled in the art. The chemistry of protecting groups can
be found, for example, in Greene, et al., Protective Groups in
Organic Synthesis, 2d. Ed., Wiley & Sons, 1991, which is
incorporated herein by reference in its entirety.

The reactions of the processes described herein can be
carried out in suitable solvents, which can be readily selected
by one of'skill in the art of organic synthesis. Suitable solvents
can be substantially nonreactive with the starting materials
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(reactants), the intermediates, or products at the temperatures
atwhich the reactions are carried out, i.e., temperatures which
can range from the solvent’s freezing temperature to the
solvent’s boiling temperature. A given reaction can be carried
out in one solvent or a mixture of more than one solvent.
Depending on the particular reaction step, suitable solvents
for a particular reaction step can be selected.

Resolution of racemic mixtures of modified nucleosides
and nucleotides can be carried out by any of numerous meth-
ods known in the art. An example method includes fractional
recrystallization using a “chiral resolving acid” which is an
optically active, salt-forming organic acid. Suitable resolving
agents for fractional recrystallization methods are, for
example, optically active acids, such as the D and L. forms of
tartaric acid, diacetyltartaric acid, dibenzoyltartaric acid,
mandelic acid, malic acid, lactic acid or the various optically
active camphorsulfonic acids. Resolution of racemic mix-
tures can also be carried out by elution on a column packed
with an optically active resolving agent (e.g., dinitroben-
zoylphenylglycine). Suitable elution solvent composition can
be determined by one skilled in the art.

Modified nucleosides and nucleotides (e.g., building block
molecules) can be prepared according to the synthetic meth-
ods described in Ogata et al., J. Org. Chem. 74:2585-2588
(2009); Purmal et al., Nucl. Acids Res. 22(1): 72-78, (1994);
Fukuhara et al., Biochemistry, 1(4): 563-568 (1962); and Xu
et al., Tetrahedron, 48(9): 1729-1740 (1992), each of which
are incorporated by reference in their entirety.

The polypeptides, primary constructs, and mmRNA ofthe
invention may or may not be uniformly modified along the
entire length of the molecule. For example, one or more or all
types of nucleotide (e.g., purine or pyrimidine, or any one or
more or all of A, G, U, C) may or may not be uniformly
modified in a polynucleotide of the invention, or in a given
predetermined sequence region thereof (e.g. one or more of
the sequence regions represented in FIG. 1). In some embodi-
ments, all nucleotides X in a polynucleotide of the invention
(or in a given sequence region thereof) are modified, wherein
X may any one of nucleotides A, G, U, C, or any one of the
combinations A+G, A+U, A+C, G+U, G+C, U+C, A+G+U,
A+G+C, G+U+C or A+G+C.

Different sugar modifications, nucleotide modifications,
and/or internucleoside linkages (e.g., backbone structures)
may exist at various positions in the polynucleotide, primary
construct, or mmRNA. One of ordinary skill in the art will
appreciate that the nucleotide analogs or other
modification(s) may be located at any position(s) of a poly-
nucleotide, primary construct, or mmRNA such that the func-
tion of the polynucleotide, primary construct, or mmRNA is
not substantially decreased. A modification may also be a 5'or
3' terminal modification. The polynucleotide, primary con-
struct, or mmRNA may contain from about 1% to about 100%
modified nucleotides (either in relation to overall nucleotide
content, or in relation to one or more types of nucleotide, i.e.
any one or more of A, G, U or C) or any intervening percent-
age (e.g., from 1% to 20%, from 1% to 25%, from 1% to 50%,
from 1% to 60%, from 1% to 70%, from 1% to 80%, from 1%
to 90%, from 1% to 95%, from 10% to 20%, from 10% to
25%, from 10% to 50%, from 10% to 60%, from 10% to 70%,
from 10% to 80%, from 10% to 90%, from 10% to 95%, from
10% to 100%, from 20% to 25%, from 20% to 50%, from
20% to 60%, from 20% to 70%, from 20% to 80%, from 20%
to 90%, from 20% to 95%, from 20% to 100%, from 50% to
60%, from 50% to 70%, from 50% to 80%, from 50% to 90%,
from 50% to 95%, from 50% to 100%, from 70% to 80%,
from 70% to 90%, from 70% to 95%, from 70% to 100%,
from 80% to 90%, from 80% to 95%, from 80% to 100%,
from 90% to 95%, from 90% to 100%, and from 95% to
100%).



US 9,050,297 B2

179

In some embodiments, the polynucleotide, primary con-
struct, or mmRNA includes a modified pyrimidine (e.g., a
modified uracil/uridine/U or modified cytosine/cytidine/C).
In some embodiments, the uracil or uridine (generally: U) in
the polynucleotide, primary construct, or mmRNA molecule
may be replaced with from about 1% to about 100% of a
modified uracil or modified uridine (e.g., from 1% to 20%,
from 1% to 25%, from 1% to 50%, from 1% to 60%, from 1%
to 70%, from 1% to 80%, from 1% to 90%, from 1% to 95%,
from 10% to 20%, from 10% to 25%, from 10% to 50%, from
10% to 60%, from 10% to 70%, from 10% to 80%, from 10%
to 90%, from 10% to 95%, from 10% to 100%, from 20% to
25%, from 20% to 50%, from 20% to 60%, from 20% to 70%,
from 20% to 80%, from 20% to 90%, from 20% to 95%, from
20% to 100%, from 50% to 60%, from 50% to 70%, from
50% to 80%, from 50% to 90%, from 50% to 95%, from 50%
to 100%, from 70% to 80%, from 70% to 90%, from 70% to
95%, from 70% to 100%, from 80% to 90%, from 80% to
95%, from 80% to 100%, from 90% to 95%, from 90% to
100%, and from 95% to 100% of a modified uracil or modi-
fied uridine). The modified uracil or uridine can be replaced
by a compound having a single unique structure or by a
plurality of compounds having different structures (e.g., 2, 3,
4 or more unique structures, as described herein). In some
embodiments, the cytosine or cytidine (generally: C) in the
polynucleotide, primary construct, or mmRNA molecule
may be replaced with from about 1% to about 100% of a
modified cytosine or modified cytidine (e.g., from 1% to 20%,
from 1% to 25%, from 1% to 50%, from 1% to 60%, from 1%
to 70%, from 1% to 80%, from 1% to 90%, from 1% to 95%,
from 10% to 20%, from 10% to 25%, from 10% to 50%, from
10% to 60%, from 10% to 70%, from 10% to 80%, from 10%
to 90%, from 10% to 95%, from 10% to 100%, from 20% to
25%, from 20% to 50%, from 20% to 60%, from 20% to 70%,
from 20% to 80%, from 20% to 90%, from 20% to 95%, from
20% to 100%, from 50% to 60%, from 50% to 70%, from
50% to 80%, from 50% to 90%, from 50% to 95%, from 50%
to 100%, from 70% to 80%, from 70% to 90%, from 70% to
95%, from 70% to 100%, from 80% to 90%, from 80% to
95%, from 80% to 100%, from 90% to 95%, from 90% to
100%, and from 95% to 100% of a modified cytosine or
modified cytidine). The modified cytosine or cytidine can be
replaced by a compound having a single unique structure or
by a plurality of compounds having different structures (e.g.,
2, 3, 4 or more unique structures, as described herein).

In some embodiments, the present disclosure provides meth-
ods of synthesizing a polynucleotide, primary construct, or
mmRNA (e.g., the first region, first flanking region, or second
flanking region) including n number of linked nucleosides
having Formula (Ia-1):

(Ia-1)
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comprising:
a) reacting a nucleotide of Formula (IV-1):

av-1)

Yl\Ys

with a phosphoramidite compound of Formula (V-1):

(V-1
Pl—yl_ s

wherein Y? is H, hydroxy, phosphoryl, pyrophosphate, sul-
fate, amino, thiol, optionally substituted amino acid, or a
peptide (e.g., including from 2 to 12 amino acids); and each
P!, P2, and P° is, independently, a suitable protecting group;
and

notes a solid support;

to provide a polynucleotide, primary construct, or mmRNA
of Formula (VI-1):

(VI-1)
Pl—vl_ s

and

b) oxidizing or sulfurizing the polynucleotide, primary con-
struct, or mmRNA of Formula (V) to yield a polynucleotide,
primary construct, or mmRNA of Formula (VII-1):
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(VIL-1)

and
¢) removing the protecting groups to yield the polynucleotide,
primary construct, or mmRNA of Formula (Ia).

In some embodiments, steps a) and b) are repeated from 1
to about 10,000 times. In some embodiments, the methods
further comprise a nucleotide (e.g., mmRNA molecule)
selected from the group consisting of A, C, G and U adenos-
ine, cytosine, guanosine, and uracil. In some embodiments,
the nucleobase may be a pyrimidine or derivative thereof. In
some embodiments, the polynucleotide, primary construct, or
mmRNA is translatable.

Other components of polynucleotides, primary constructs,
and mmRNA are optional, and are beneficial in some embodi-
ments. For example, a 5' untranslated region (UTR) and/or a
3'UTR are provided, wherein either or both may indepen-
dently contain one or more different nucleotide modifica-
tions. In such embodiments, nucleotide modifications may
also be present in the translatable region. Also provided are
polynucleotides, primary constructs, and mmRNA contain-
ing a Kozak sequence.
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Exemplary syntheses of modified nucleotides, which are
incorporated into a modified nucleic acid or mmRNA, e.g.,
RNA or mRNA, are provided below in Scheme 1 through
Scheme 11. Scheme 1 provides a general method for phos-
phorylation of nucleosides, including modified nucleosides.

Scheme 1
s
4
® ==N
N
4 \ / 1) POCl;
S EEE——
HO N N 2) Pyrophosphate
}1%
OH OH
N\N
7
@ ==N
N
TS,
N
eo—ll’—o—rl’—o—}[—o N
[6XS) Op o)<} o
OH OH

Various protecting groups may be used to control the reac-
tion. For example, Scheme 2 provides the use of multiple
protecting and deprotecting steps to promote phosphoryla-
tion at the 5' position of the sugar, rather than the 2' and 3'
hydroxyl groups.

Scheme 2
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N
N
O
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Modified nucleotides can be synthesized in any useful -continued

manner. Schemes 3, 4, and 7 provide exemplary methods for 3

synthesizing modified nucleotides having a modified purine
nucleobase; and Schemes 5 and 6 provide exemplary methods
for synthesizing modified nucleotides having a modified
pseudouridine or pseudoisocytidine, respectively.
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Scheme 6 Scheme 7
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OH OH Schemes 8 and 9 provide e).(emplary sy.ntl?e.ses of modiﬁe?d
nucleotides. Scheme 10 provides a non-limiting biocatalytic
method for producing nucleotides.
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Scheme 11 provides an exemplary synthesis of a modified
uracil, where the N1 position is modified with R*?*, as pro-
vided elsewhere, and the 5'-position of ribose is phosphory-
lated. T, T2, R'?¢, R'??_ and r are as provided herein. This
synthesis, as well as optimized versions thereof, can be used
to modify other pyrimidine nucleobases and purine nucleo-
bases (see e.g., Formulas (b1)-(b43)) and/or to install one or
more phosphate groups (e.g., at the 5' position of the sugar).
This alkylating reaction can also be used to include one or
more optionally substituted alkyl group at any reactive group
(e.g., amino group) in any nucleobase described herein (e.g.,
the amino groups in the Watson-Crick base-pairing face for
cytosine, uracil, adenine, and guanine)

Scheme 11
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Combinations of Nucleotides in mmRNA

Further examples of modified nucleotides and modified
nucleotide combinations are provided below in Table 9.
These combinations of modified nucleotides can be used to
form the polypeptides, primary constructs, or mmRNA ofthe
invention. Unless otherwise noted, the modified nucleotides
may be completely substituted for the natural nucleotides of
the modified nucleic acids or mmRNA of the invention. As a
non-limiting example, the natural nucleotide uridine may be
substituted with a modified nucleoside described herein. In
another non-limiting example, the natural nucleotide uridine
may be partially substituted (e.g., about 0.1%, 1%, 5%, 10%,
15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%,
65%, 70%, 75%, 80%, 85%, 90%, 95% or 99.9%) with at
least one of the modified nucleoside disclosed herein.

TABLE 9

Modified Nucleotide Modified Nucleotide Combination

a-thio-cytidine a-thio-cytidine/5-iodo-uridine
a-thio-cytidine/N1-methyl-pseudouridine
a-thio-cytidine/a-thio-uridine
a-thio-cytidine/5-methyl-uridine
a-thio-cytidine/pseudo-uridine

about 50% of the cytosines are a-thio-cytidine
pseudoisocytidine/5-iodo-uridine
pseudoisocytidine/N1-methyl-pseudouridine
pseudoisocytidine/a-thio-uridine
pseudoisocytidine/5-methyl-uridine
pseudoisocytidine/pseudouridine

about 25% of cytosines are pseudoisocytidine
pseudoisocytidine/about 50% of uridines are N1-
methyl-pseudouridine and about 50% of uridines are
pseudouridine

pseudoisocytidine/about 25% of uridines are N1-
methyl-pseudouridine and about 25% of uridines are
pseudouridine

pyrrolo-cytidine/5-iodo-uridine
pyrrolo-cytidine/N1-methyl-pseudouridine
pyrrolo-cytidine/a-thio-uridine
pyrrolo-cytidine/5-methyl-uridine
pyrrolo-cytidine/pseudouridine

about 50% of the cytosines are pyrrolo-cytidine
5-methyl-cytidine/5-iodo-uridine
5-methyl-cytidine/N1-methyl-pseudouridine
5-methyl-cytidine/a-thio-uridine
5-methyl-cytidine/5-methyl-uridine
5-methyl-cytidine/pseudouridine

about 25% of cytosines are 5-methyl-cytidine
about 50% of cytosines are 5-methyl-cytidine
5-methyl-cytidine/5-methoxy-uridine
5-methyl-cytidine/5-bromo-uridine
5-methyl-cytidine/2-thio-uridine
5-methyl-cytidine/about 50% of uridines are 2-thio-
uridine

about 50% of uridines are 5-methyl-cytidine/about
50% of uridines are 2-thio-uridine
N4-acetyl-cytidine/5-iodo-uridine
N4-acetyl-cytidine/N1-methyl-pseudouridine
N4-acetyl-cytidine/a-thio-uridine
N4-acetyl-cytidine/5-methyl-uridine
N4-acetyl-cytidine/pseudouridine

pseudoisocytidine

pyrrolo-cytidine

5-methyl-cytidine

N4-acetyl-cytidine
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TABLE 9-continued

Modified Nucleotide Modified Nucleotide Combination

about 50% of cytosines are N4-acetyl-cytidine
about 25% of cytosines are N4-acetyl-cytidine
N4-acetyl-cytidine/5-methoxy-uridine
N4-acetyl-cytidine/5-bromo-uridine
N4-acetyl-cytidine/2-thio-uridine

about 50% of cytosines are N4-acetyl-cytidine/about
50% of uridines are 2-thio-uridine

Further examples of modified nucleotide combinations are
provided below in Table 10. These combinations of modified
nucleotides can be used to form the polypeptides, primary
constructs, or mmRNA of the invention.

TABLE 10

Modified Nucleotide

Modified Nucleotide Combination

modified cytidine having
one or more nucleobases
of Formula (b 10)

modified cytidine having
one or more nucleobases
of Formula (b32)

modified uridine having
one or more nucleobases
of Formula (b1)
modified uridine having
one or more nucleobases
of Formula (b8)
modified uridine having
one or more nucleobases
of Formula (b28)
modified uridine having
one or more nucleobases
of Formula (b29)
modified uridine having
one or more nucleobases
of Formula (b30)

modified cytidine with (b10)/pseudouridine
modified cytidine with (b10)/N1-methyl-
pseudouridine

modified cytidine with (b10)/5-methoxy-uridine
modified cytidine with (b10)/5-methyl-uridine
modified cytidine with (b10)/5-bromo-uridine
modified cytidine with (b10)/2-thio-uridine
about 50% of cytidine substituted with modified
cytidine (b10)/ about 50% of uridines are 2-thio-
uridine

modified cytidine with (b32)/pseudouridine
modified cytidine with (b32)/N1-methyl-
pseudouridine

modified cytidine with (b32)/5-methoxy-uridine
modified cytidine with (b32)/5-methyl-uridine
modified cytidine with (b32)/5-bromo-uridine
modified cytidine with (b32)/2-thio-uridine
about 50% of cytidine substituted with modified
cytidine (b32)/about 50% of uridines are 2-thio-
uridine

modified uridine with (b1)/N4-acetyl-cytidine
modified uridine with (b1)/5-methyl-cytidine

modified uridine with (b8)/N4-acetyl-cytidine
modified uridine with (b8)/5-methyl-cytidine

modified uridine with (b28)/N4-acetyl-cytidine
modified uridine with (b28)/5-methyl-cytidine

modified uridine with (b29)/N4-acetyl-cytidine
modified uridine with (b29)/5-methyl-cytidine

modified uridine with (b30)/N4-acetyl-cytidine
modified uridine with (b30)/5-methyl-cytidine

In some embodiments, at least 25% of the cytosines are

replaced by a compound of Formula (b10)-(b14) (e.g., at least
about 30%, at least about 35%, at least about 40%, at least
about 45%, at least about 50%, at least about 55%, at least
about 60%, at least about 65%, at least about 70%, at least
about 75%, at least about 80%, at least about 85%, at least
about 90%, at least about 95%, or about 100%).

In some embodiments, at least 25% of the uracils are
replaced by a compound of Formula (b1)-(b9) (e.g., at least
about 30%, at least about 35%, at least about 40%, at least
about 45%, at least about 50%, at least about 55%, at least
about 60%, at least about 65%, at least about 70%, at least
about 75%, at least about 80%, at least about 85%, at least
about 90%, at least about 95%, or about 100%).

In some embodiments, at least 25% of the cytosines are
replaced by a compound of Formula (b10)-(b14), and at least
25% of the uracils are replaced by a compound of Formula
(b1)-(b9) (e.g., at least about 30%, at least about 35%, at least
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about 40%, at least about 45%, at least about 50%, at least
about 55%, at least about 60%, at least about 65%, at least
about 70%, at least about 75%, at least about 80%, at least
about 85%, at least about 90%, at least about 95%, or about
100%).

IV. PHARMACEUTICAL COMPOSITIONS

Formulation, Administration, Delivery and Dosing

The present invention provides polynucleotides, primary
constructs and mmRNA compositions and complexes in
combination with one or more pharmaceutically acceptable
excipients. Pharmaceutical compositions may optionally
comprise one or more additional active substances, e.g. thera-
peutically and/or prophylactically active substances. General
considerations in the formulation and/or manufacture of
pharmaceutical agents may be found, for example, in Rem-
ington: The Science and Practice of Pharmacy 21* ed., Lip-
pincott Williams & Wilkins, 2005 (incorporated herein by
reference).

In some embodiments, compositions are administered to
humans, human patients or subjects. For the purposes of the
present disclosure, the phrase “active ingredient” generally
refers to polynucleotides, primary constructs and mmRNA to
be delivered as described herein.

Although the descriptions of pharmaceutical compositions
provided herein are principally directed to pharmaceutical
compositions which are suitable for administration to
humans, it will be understood by the skilled artisan that such
compositions are generally suitable for administration to any
other animal, e.g., to non-human animals, e.g. non-human
mammals. Modification of pharmaceutical compositions
suitable for administration to humans in order to render the
compositions suitable for administration to various animals is
well understood, and the ordinarily skilled veterinary phar-
macologist can design and/or perform such modification with
merely ordinary, if any, experimentation. Subjects to which
administration of the pharmaceutical compositions is con-
templated include, but are not limited to, humans and/or other
primates; mammals, including commercially relevant mam-
mals such as cattle, pigs, horses, sheep, cats, dogs, mice,
and/or rats; and/or birds, including commercially relevant
birds such as poultry, chickens, ducks, geese, and/or turkeys.

Formulations of the pharmaceutical compositions
described herein may be prepared by any method known or
hereafter developed in the art of pharmacology. In general,
such preparatory methods include the step of bringing the
active ingredient into association with an excipient and/or one
or more other accessory ingredients, and then, if necessary
and/or desirable, dividing, shaping and/or packaging the
product into a desired single- or multi-dose unit.

A pharmaceutical composition in accordance with the
invention may be prepared, packaged, and/or sold in bulk, as
a single unit dose, and/or as a plurality of single unit doses. As
used herein, a “unit dose” is discrete amount of the pharma-
ceutical composition comprising a predetermined amount of
the active ingredient. The amount of the active ingredient is
generally equal to the dosage of the active ingredient which
would be administered to a subject and/or a convenient frac-
tion of such a dosage such as, for example, one-half or one-
third of such a dosage.

Relative amounts of the active ingredient, the pharmaceu-
tically acceptable excipient, and/or any additional ingredients
in a pharmaceutical composition in accordance with the
invention will vary, depending upon the identity, size, and/or
condition of the subject treated and further depending upon
the route by which the composition is to be administered. By
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way of example, the composition may comprise between
0.1% and 100%, e.g., between 0.5 and 50%, between 1-30%,
between 5-80%, at least 80% (w/w) active ingredient.
Formulations

The polynucleotide, primary construct, and mmRNA of
the invention can be formulated using one or more excipients
to: (1) increase stability; (2) increase cell transfection; (3)
permit the sustained or delayed release (e.g., from a depot
formulation of the polynucleotide, primary construct, or
mmRNA); (4) alter the biodistribution (e.g., target the poly-
nucleotide, primary construct, or mmRNA to specific tissues
or cell types); (5) increase the translation of encoded protein
in vivo; and/or (6) alter the release profile of encoded protein
invivo. In addition to traditional excipients such as any and all
solvents, dispersion media, diluents, or other liquid vehicles,
dispersion or suspension aids, surface active agents, isotonic
agents, thickening or emulsifying agents, preservatives,
excipients of the present invention can include, without limi-
tation, lipidoids, liposomes, lipid nanoparticles, polymers,
lipoplexes, core-shell nanoparticles, peptides, proteins, cells
transfected with polynucleotide, primary construct, or
mmRNA (e.g., for transplantation into a subject), hyalu-
ronidase, nanoparticle mimics and combinations thereof.
Accordingly, the formulations of the invention can include
one or more excipients, each in an amount that together
increases the stability of the polynucleotide, primary con-
struct, or mmRNA, increases cell transfection by the poly-
nucleotide, primary construct, or mmRNA, increases the
expression of polynucleotide, primary construct, or mmRNA
encoded protein, and/or alters the release profile of poly-
nucleotide, primary construct, or mmRNA encoded proteins.
Further, the primary construct and mmRNA of the present
invention may be formulated using self-assembled nucleic
acid nanoparticles.

Formulations of the pharmaceutical compositions
described herein may be prepared by any method known or
hereafter developed in the art of pharmacology. In general,
such preparatory methods include the step of associating the
active ingredient with an excipient and/or one or more other
accessory ingredients.

A pharmaceutical composition in accordance with the
present disclosure may be prepared, packaged, and/or sold in
bulk, as a single unit dose, and/or as a plurality of single unit
doses. As used herein, a “unit dose” refers to a discrete
amount of the pharmaceutical composition comprising a pre-
determined amount of the active ingredient. The amount of
the active ingredient may generally be equal to the dosage of
the active ingredient which would be administered to a sub-
ject and/or a convenient fraction of such a dosage including,
but not limited to, one-half or one-third of such a dosage.

Relative amounts of the active ingredient, the pharmaceu-
tically acceptable excipient, and/or any additional ingredients
in a pharmaceutical composition in accordance with the
present disclosure may vary, depending upon the identity,
size, and/or condition of the subject being treated and further
depending upon the route by which the composition is to be
administered. For example, the composition may comprise
between 0.1% and 99% (w/w) of the active ingredient.

In some embodiments, the formulations described herein
may contain at least one mmRNA. As a non-limiting
example, the formulations may contain 1, 2, 3, 4 or 5
mmRNA. In one embodiment the formulation may contain
modified mRNA encoding proteins selected from categories
such as, but not limited to, human proteins, veterinary pro-
teins, bacterial proteins, biological proteins, antibodies,
immunogenic proteins, therapeutic peptides and proteins,
secreted proteins, plasma membrane proteins, cytoplasmic
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and cytoskeletal proteins, intracellular membrane bound pro-
teins, nuclear proteins, proteins associated with human dis-
ease and/or proteins associated with non-human diseases. In
one embodiment, the formulation contains at least three
modified mRNA encoding proteins. In one embodiment, the
formulation contains at least five modified mRNA encoding
proteins.

Pharmaceutical formulations may additionally comprise a
pharmaceutically acceptable excipient, which, as used
herein, includes, but is not limited to, any and all solvents,
dispersion media, diluents, or other liquid vehicles, disper-
sion or suspension aids, surface active agents, isotonic agents,
thickening or emulsifying agents, preservatives, and the like,
as suited to the particular dosage form desired. Various
excipients for formulating pharmaceutical compositions and
techniques for preparing the composition are known in the art
(see Remington: The Science and Practice of Pharmacy, 21%
Edition, A. R. Gennaro, Lippincott, Williams & Wilkins,
Baltimore, Md., 2006; incorporated herein by reference in its
entirety). The use of a conventional excipient medium may be
contemplated within the scope of the present disclosure,
except insofar as any conventional excipient medium may be
incompatible with a substance or its derivatives, such as by
producing any undesirable biological effect or otherwise
interacting in a deleterious manner with any other component
(s) of the pharmaceutical composition.

In some embodiments, the particle size of the lipid nano-
particle may be increased and/or decreased. The change in
particle size may be able to help counter biological reaction
such as, but not limited to, inflammation or may increase the
biological effect of the modified mRNA delivered to mam-
mals.

Pharmaceutically acceptable excipients used in the manu-
facture of pharmaceutical compositions include, but are not
limited to, inert diluents, surface active agents and/or emul-
sifiers, preservatives, buffering agents, lubricating agents,
and/or oils. Such excipients may optionally be included in the
pharmaceutical formulations of the invention.

Lipidoids

The synthesis of lipidoids has been extensively described
and formulations containing these compounds are particu-
larly suited for delivery of polynucleotides, primary con-
structs or mmRNA (see Mahon et al., Bioconjug Chem. 2010
21:1448-1454; Schroeder et al., ] Intern Med. 2010 267:9-21;
Akinc et al., Nat. Biotechnol. 2008 26:561-569; Love et al.,
Proc Natl Acad Sci USA. 2010 107:1864-1869; Siegwart et
al., Proc Natl Acad Sci USA. 2011 108:12996-3001; all of
which are incorporated herein in their entireties).

While these lipidoids have been used to eftectively deliver
double stranded small interfering RNA molecules in rodents
and non-human primates (see Akinc et al., Nat. Biotechnol.
2008 26:561-569; Frank-Kamenetsky et al., Proc Natl Acad
Sci USA. 2008 105:11915-11920; Akinc et al., Mol. Ther.
2009 17:872-879; Love et al., Proc Natl Acad Sci USA. 2010
107:1864-1869; Leuschner et al., Nat. Biotechnol. 2011
29:1005-1010; all of which is incorporated herein in their
entirety), the present disclosure describes their formulation
and use in delivering single stranded polynucleotides, pri-
mary constructs, or mmRNA. Complexes, micelles, lipo-
somes or particles can be prepared containing these lipidoids
and therefore, can result in an effective delivery of the poly-
nucleotide, primary construct, or mmRNA, as judged by the
production of an encoded protein, following the injection of a
lipidoid formulation via localized and/or systemic routes of
administration. Lipidoid complexes of polynucleotides, pri-
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mary constructs, or mmRNA can be administered by various
means including, but not limited to, intravenous, intramuscu-
lar, or subcutaneous routes.

In vivo delivery of nucleic acids may be affected by many
parameters, including, but not limited to, the formulation
composition, nature of particle PEGylation, degree of load-
ing, oligonucleotide to lipid ratio, and biophysical parameters
such as, but not limited to, particle size (Akinc et al., Mol.
Ther. 2009 17:872-879; herein incorporated by reference in
its entirety). As an example, small changes in the anchor chain
length of poly(ethylene glycol) (PEG) lipids may result in
significant effects on in vivo efficacy. Formulations with the
different lipidoids, including, but not limited to penta[3-(1-
laurylaminopropionyl)]-triethylenetetramine hydrochloride
(TETA-5LAP; aka 98N12-5, see Murugaiah et al., Analytical
Biochemistry, 401:61 (2010); herein incorporated by refer-
ence in its entirety), C12-200 (including derivatives and vari-
ants), and MD1, can be tested for in vivo activity.

The lipidoid referred to herein as “98N12-5" is disclosed
by Akinc et al., Mol. Ther. 2009 17:872-879 and is incorpo-
rated by reference in its entirety. (See FIG. 2)

The lipidoid referred to herein as “C12-200” is disclosed
by Love etal., Proc Natl Acad Sci USA. 2010 107:1864-1869
(see FIG. 2) and Liu and Huang, Molecular Therapy. 2010
669-670 (see FIG. 2); both of which are herein incorporated
by reference in their entirety. The lipidoid formulations can
include particles comprising either 3 or 4 or more compo-
nents in addition to polynucleotide, primary construct, or
mmRNA. As an example, formulations with certain lipidoids,
include, but are not limited to, 98N12-5 and may contain 42%
lipidoid, 48% cholesterol and 10% PEG (C,_, alkyl chain
length). As another example, formulations with certain lipi-
doids, include, but are not limited to, C12-200 and may con-
tain 50% lipidoid, 10% disteroylphosphatidyl choline, 38.5%
cholesterol, and 1.5% PEG-DMG.

In one embodiment, a polynucleotide, primary construct,
or mmRNA formulated with a lipidoid for systemic intrave-
nous administration can target the liver. For example, a final
optimized intravenous formulation using polynucleotide, pri-
mary construct, or mmRNA, and comprising a lipid molar
composition of 42% 98N12-5, 48% cholesterol, and 10%
PEG-lipid with a final weight ratio of about 7.5 to 1 total lipid
to polynucleotide, primary construct, or mmRNA, anda C,_,
alkyl chain length on the PEG lipid, with a mean particle size
of roughly 50-60 nm, can result in the distribution of the
formulation to be greater than 90% to the liver. (see, Akinc et
al., Mol. Ther. 2009 17:872-879; herein incorporated by ref-
erence in its entirety). In another example, an intravenous
formulation using a C12-200 (see U.S. provisional applica-
tion 61/175,770 and published international application
W02010129709, each of which is herein incorporated by
reference in their entirety) lipidoid may have a molar ratio of
50/10/38.5/1.5 of C12-200/disteroylphosphatidyl choline/
cholesterol/PEG-DMG, with a weight ratio of 7 to 1 total lipid
to polynucleotide, primary construct, or mmRNA, and a
mean particle size of 80 nm may be effective to deliver poly-
nucleotide, primary construct, or mmRNA to hepatocytes
(see, Love et al., Proc Natl Acad Sci USA. 2010 107:1864-
1869 herein incorporated by reference in its entirety). In
another embodiment, an MD1 lipidoid-containing formula-
tion may be used to effectively deliver polynucleotide, pri-
mary construct, or mmRNA to hepatocytes in vivo. The char-
acteristics of optimized lipidoid formulations for
intramuscular or subcutaneous routes may vary significantly
depending on the target cell type and the ability of formula-
tions to diffuse through the extracellular matrix into the blood
stream. While a particle size of less than 150 nm may be

20

25

35

40

45

50

55

196

desired for eftective hepatocyte delivery due to the size of the
endothelial fenestrae (see, Akinc et al., Mol. Ther. 2009
17:872-879 herein incorporated by reference in its entirety),
use of a lipidoid-formulated polynucleotide, primary con-
struct, or mmRNA to deliver the formulation to other cells
types including, but not limited to, endothelial cells, myeloid
cells, and muscle cells may not be similarly size-limited. Use
of lipidoid formulations to deliver siRNA in vivo to other
non-hepatocyte cells such as myeloid cells and endothelium
has been reported (see Akinc et al., Nat. Biotechnol. 2008
26:561-569; Leuschner et al., Nat. Biotechnol. 2011 29:1005-
1010; Cho et al. Adv. Funct. Mater. 2009 19:3112-3118; 8
International Judah Folkman Conference, Cambridge, Mass.
Oct. 8-9, 2010; each of which is herein incorporated by ref-
erence in its entirety). Effective delivery to myeloid cells,
such as monocytes, lipidoid formulations may have a similar
component molar ratio. Different ratios of lipidoids and other
components including, but not limited to, disteroylphosphati-
dyl choline, cholesterol and PEG-DMG, may be used to opti-
mize the formulation of the polynucleotide, primary con-
struct, or mmRNA for delivery to different cell types
including, but not limited to, hepatocytes, myeloid cells,
muscle cells, etc. For example, the component molar ratio
may include, but is not limited to, 50% C12-200, 10% dis-
teroylphosphatidyl choline, 38.5% cholesterol, and %1.5
PEG-DMG (see Leuschner et al., Nat Biotechnol 2011
29:1005-1010; herein incorporated by reference in its
entirety). The use of lipidoid formulations for the localized
delivery of nucleic acids to cells (such as, but not limited to,
adipose cells and muscle cells) via either subcutaneous or
intramuscular delivery, may not require all of the formulation
components desired for systemic delivery, and as such may
comprise only the lipidoid and the polynucleotide, primary
construct, or mmRNA.

Combinations of different lipidoids may be used to
improve the efficacy of polynucleotide, primary construct, or
mmRNA directed protein production as the lipidoids may be
able to increase cell transfection by the polynucleotide, pri-
mary construct, or mmRNA; and/or increase the translation
of encoded protein (see Whitehead et al., Mol. Ther. 2011,
19:1688-1694, herein incorporated by reference in its
entirety).

Liposomes, Lipoplexes, and Lipid Nanoparticles

The polynucleotide, primary construct, and mmRNA of
the invention can be formulated using one or more liposomes,
lipoplexes, or lipid nanoparticles. In one embodiment, phar-
maceutical compositions of polynucleotide, primary con-
struct, or mmRNA include liposomes. Liposomes are artifi-
cially-prepared vesicles which may primarily be composed of
a lipid bilayer and may be used as a delivery vehicle for the
administration of nutrients and pharmaceutical formulations.
Liposomes can be of different sizes such as, but not limited to,
a multilamellar vesicle (MLV) which may be hundreds of
nanometers in diameter and may contain a series of concen-
tric bilayers separated by narrow aqueous compartments, a
small unicellular vesicle (SUV) which may be smaller than 50
nm in diameter, and a large unilamellar vesicle (LUV) which
may be between 50 and 500 nm in diameter. Liposome design
may include, but is not limited to, opsonins or ligands in order
to improve the attachment of liposomes to unhealthy tissue or
to activate events such as, but not limited to, endocytosis.
Liposomes may contain a low or a high pH in order to
improve the delivery of the pharmaceutical formulations.

The formation of liposomes may depend on the physico-
chemical characteristics such as, but not limited to, the phar-
maceutical formulation entrapped and the liposomal ingredi-
ents, the nature of the medium in which the lipid vesicles are
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dispersed, the effective concentration of the entrapped sub-
stance and its potential toxicity, any additional processes
involved during the application and/or delivery of the
vesicles, the optimization size, polydispersity and the shelf-
life of the vesicles for the intended application, and the batch-
to-batch reproducibility and possibility of large-scale produc-
tion of safe and efficient liposomal products.

In one embodiment, pharmaceutical compositions
described herein may include, without limitation, liposomes
such as those formed from 1,2-dioleyloxy-N,N-dimethylami-
nopropane (DODMA) liposomes, Dil.a2 liposomes from
Marina Biotech (Bothell, Wash.), 1,2-dilinoleyloxy-3-dim-
ethylaminopropane (DLin-DMA), 2,2-dilinoleyl-4-(2-dim-
ethylaminoethyl)-[1,3]-dioxolane (DLin-KC2-DMA), and
MC3 (US20100324120; herein incorporated by reference in
its entirety) and liposomes which may deliver small molecule
drugs such as, but not limited to, DOXIL® from Janssen
Biotech, Inc. (Horsham, Pa.).

In one embodiment, pharmaceutical compositions
described herein may include, without limitation, liposomes
such as those formed from the synthesis of stabilized plas-
mid-lipid particles (SPLP) or stabilized nucleic acid lipid
particle (SNALP) that have been previously described and
shown to be suitable for oligonucleotide delivery in vitro and
in vivo (see Wheeler et al. Gene Therapy. 1999 6:271-281;
Zhang et al. Gene Therapy. 1999 6:1438-1447; Jeffs et al.
Pharm Res. 2005 22:362-372; Morrissey et al., Nat. Biotech-
nol. 2005 2:1002-1007;, Zimmermann et al., Nature. 2006
441:111-114; Heyes et al. J Contr Rel. 2005 107:276-287;
Semple et al. Nature Biotech. 2010 28:172-176; Judge etal. J
Clin Invest. 2009 119:661-673; deFougerolles Hum Gene
Ther. 2008 19:125-132; all of which are incorporated herein
in their entireties). The original manufacture method by
Wheeler et al. was a detergent dialysis method, which was
later improved by Jeffs et al. and is referred to as the sponta-
neous vesicle formation method. The liposome formulations
are composed of 3 to 4 lipid components in addition to the
polynucleotide, primary construct, or mmRNA. As an
example a liposome can contain, but is not limited to, 55%
cholesterol, 20% disteroylphosphatidyl choline (DSPC),
10% PEG-S-DSG, and 15% 1,2-dioleyloxy-N,N-dimethy-
laminopropane (DODMA), as described by Jefts et al. As
another example, certain liposome formulations may contain,
but are not limited to, 48% cholesterol, 20% DSPC, 2%
PEG-c-DMA, and 30% cationic lipid, where the cationic lipid
can be 1,2-distearloxy-N,N-dimethylaminopropane (DS-
DMA), DODMA, DLin-DMA, or 1,2-dilinolenyloxy-3-dim-
ethylaminopropane (DLenDMA), as described by Heyes et
al.

In one embodiment, pharmaceutical compositions may
include liposomes which may be formed to deliver mmRNA
which may encode at least one immunogen. The mmRNA
may be encapsulated by the liposome and/or it may be con-
tained in an aqueous core which may then be encapsulated by
the liposome (see International Pub. Nos. W(02012031046,
W02012031043, W02012030901 and WO02012006378;
each of which is herein incorporated by reference in their
entirety). In another embodiment, the mmRNA which may
encode an immunogen may be formulated in a cationic oil-
in-water emulsion where the emulsion particle comprises an
oil core and a cationic lipid which can interact with the
mmRNA anchoring the molecule to the emulsion particle (see
International Pub. No. W0O2012006380; herein incorporated
by reference in its entirety). In yet another embodiment, the
lipid formulation may include at least cationic lipid, a lipid
which may enhance transfection and a least one lipid which
contains a hydrophilic head group linked to a lipid moiety
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(International Pub. No. W02011076807 and U.S. Pub. No.
20110200582; each of which is herein incorporated by refer-
ence in their entirety). In another embodiment, the polynucle-
otides, primary constructs and/or mmRNA encoding an
immunogen may be formulated in a lipid vesicle which may
have crosslinks between functionalized lipid bilayers (see
U.S. Pub. No. 20120177724, herein incorporated by refer-
ence in its entirety).

In one embodiment, the polynucleotides, primary con-
structs and/or mmRNA may be formulated in a lipid vesicle
which may have crosslinks between functionalized lipid
bilayers.

In one embodiment, the polynucleotides, primary con-
structs and/or mmRNA may be formulated in a liposome
comprising a cationic lipid. The liposome may have a molar
ratio of nitrogen atoms in the cationic lipid to the phosphates
in the RNA (N:P ratio) of between 1:1 and 20:1 as described
in International Publication No. W02013006825, herein
incorporated by reference in its entirety. In another embodi-
ment, the liposome may have a N:P ratio of greater than 20:1
or less than 1:1.

In one embodiment, the polynucleotides, primary con-
structs and/or mmRNA may be formulated in a lipid-polyca-
tion complex. The formation of the lipid-polycation complex
may be accomplished by methods known in the art and/or as
described in U.S. Pub. No. 20120178702, herein incorporated
by reference in its entirety. As a non-limiting example, the
polycation may include a cationic peptide or a polypeptide
such as, but not limited to, polylysine, polyornithine and/or
polyarginine and the cationic peptides described in Interna-
tional Pub. No. W02012013326; herein incorporated by ref-
erence in its entirety. In another embodiment, the polynucle-
otides, primary constructs and/or mmRNA may be
formulated in a lipid-polycation complex which may further
include a neutral lipid such as, but not limited to, cholesterol
or dioleoyl phosphatidylethanolamine (DOPE).

The liposome formulation may be influenced by, but not
limited to, the selection of the cationic lipid component, the
degree of cationic lipid saturation, the nature of the PEGyla-
tion, ratio of all components and biophysical parameters such
as size. In one example by Semple et al. (Semple et al. Nature
Biotech. 2010 28:172-176; herein incorporated by reference
in its entirety), the liposome formulation was composed of
57.1% cationic lipid, 7.1% dipalmitoylphosphatidylcholine,
34.3% cholesterol, and 1.4% PEG-c-DMA. As another
example, changing the composition of the cationic lipid could
more effectively deliver siRNA to various antigen presenting
cells (Basha et al. Mol. Ther. 2011 19:2186-2200; herein
incorporated by reference in its entirety).

In some embodiments, the ratio of PEG in the lipid nano-
particle (LNP) formulations may be increased or decreased
and/or the carbon chain length of the PEG lipid may be
modified from C14 to C18 to alter the pharmacokinetics
and/or biodistribution of the LNP formulations. As a non-
limiting example, LNP formulations may contain 1-5% ofthe
lipid molar ratio of PEG-c-DOMG as compared to the cat-
ionic lipid, DSPC and cholesterol. In another embodiment the
PEG-c-DOMG may be replaced with a PEG lipid such as, but
not limited to, PEG-DSG (1,2-Distearoyl-sn-glycerol, meth-
oxypolyethylene glycol) or PEG-DPG (1,2-Dipalmitoyl-sn-
glycerol, methoxypolyethylene glycol). The cationic lipid
may be selected from any lipid known in the art such as, but
not limited to, DLin-MC3-DMA, DLin-DMA, C12-200 and
DLin-KC2-DMA.

In one embodiment, the polynucleotides, primary con-
structs or mmRNA may be formulated in a lipid nanoparticle
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such as those described in International Publication No.
W02012170930, herein incorporated by reference in its
entirety.

In one embodiment, the cationic lipid may be selected
from, but not limited to, a cationic lipid described in Interna-
tional Publication Nos. W02012040184, W02011153120,

WO02011149733,  'W02011090965, W02011043913,
WO02011022460, W02012061259, WO02012054365,
W02012044638, W02010080724, WO0201021865 and

W02008103276, U.S. Pat. Nos. 7,893,302, 7,404,969 and
8,283,333 and US Patent Publication No. US20100036115
and US20120202871; each of which is herein incorporated
by reference in their entirety. In another embodiment, the
cationic lipid may be selected from, but not limited to, for-

mula A described in International Publication Nos.
W02012040184, WO02011153120, W02011149733,
W02011090965, WO02011043913, W02011022460,

W02012061259, W02012054365 and W02012044638;
each of which is herein incorporated by reference in their
entirety. In yet another embodiment, the cationic lipid may be
selected from, but not limited to, formula CLI-CLXXIX of
International Publication No. W02008103276, formula CLI-
CLXXIX of U.S. Pat. No. 7,893,302, formula CLI-
CLXXXXII of U.S. Pat. No. 7,404,969 and formula I-VI of
US Patent Publication No. US20100036115; each of which is
herein incorporated by reference in their entirety. As a non-
limiting example, the cationic lipid may be selected from
(207,237)—N,N-dimethylnonacosa-20,23-dien-10-amine,
(1772.,207)—N,N-dimemylhexacosa-17,20-dien-9-amine,
(17,197)—N5N-dimethylpentacosa-16,19-dien-8-amine,
(137,16Z)—N,N-dimethyldocosa-13,16-dien-5-amine,
(127,157)—N,N-dimethylhenicosa-12,15-dien-4-amine,
(147.,177)—N,N-dimethyltricosa-14,17-dien-6-amine,
(157,187)—N,N-dimethyltetracosa-15,18-dien-7-amine,
(187,217)—N,N-dimethylheptacosa-18,21-dien-10-amine,
(157,187)—N,N-dimethyltetracosa-15,18-dien-5-amine,
(147.,177)—N,N-dimethyltricosa-14,17-dien-4-amine,
(197.,227)—N,N-dimethyloctacosa-19,22-dien-9-amine,
(187,217)—N,N-dimethylheptacosa-18,21-dien-8-amine,
(1772.,207)—N,N-dimethylhexacosa-17,20-dien-7-amine,
(167.,197)—N,N-dimethylpentacosa-16,19-dien-6-amine,
(227.,257)—N,N-dimethylhentriaconta-22,25-dien-10-
amine, (217,247)—N ,N-dimethyltriaconta-21,24-dien-9-
amine, (18Z)—N,N-dimethylheptacos-18-en-10-amine,
(172)—N,N-dimethylhexacos-17-en-9-amine, (197,227)—
N,N-dimethyloctacosa-19,22-dien-7-amine, N,N-dimethyl-
heptacosan-10-amine, (20Z,237)—N-ethyl-N-methylnona-
cosa-20,23-dien-10-amine, 1-[(11Z,147)-1-nonylicosa-11,
14-dien-1-yl]pyrrolidine, (20Z)—N,N-dimethylheptacos-
20-en-10-amine, (157)—N,N-dimethyl eptacos-15-en-10-
amine, (147)—N,N-dimethylnonacos-14-en-10-amine,
(17Z)—N,N-dimethylnonacos-17-en-10-amine, (247)—N,
N-dimethyltritriacont-24-en-10-amine,  (20Z)—N,N-dim-
ethylnonacos-20-en-10-amine, (227)—N,N-dimethylhen-
triacont-22-en-10-amine,  (16Z)—N,N-dimethylpentacos-
16-en-8-amine, (127,157)—N,N-dimethyl-2-
nonylhenicosa-12,15-dien-1-amine, (137,16Z)—N,N-
dimethyl-3-nonyldocosa-13,16-dien-1-amine, N,N-
dimethyl-1-[(1S,2R)-2-octylcyclopropyl |eptadecan-8-
amine, 1-[(18,2R)-2-hexylcyclopropyl]-N,N-
dimethylnonadecan-10-amine, N,N-dimethyl-1-[(1S,2R)-2-
octylcyclopropyl|nonadecan-10-amine, N,N-dimethyl-21-
[(1S,2R)-2-octylcyclopropyl]henicosan-10-amine,N,N-
dimethyl-1-[(1S,2S)-2-{[(1R,2R)-2-pentylcyclopropyl]
methyl }cyclopropyl|nonadecan-10-amine,N,N-dimethyl-1-
[(1S,2R)-2-octylcyclopropyl]hexadecan-8-amine, N,N-
dimethyl-[(1R,2S)-2-undecylcyclopropyl]tetradecan-5-
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amine,  N,N-dimethyl-3-{7-[(1S,2R)-2-octylcyclopropyl]
heptyl}dodecan-1-amine, 1-[(1R,2S)-2-heptylcyclopropyl]-
N,N-dimethyloctadecan-9-amine, 1-[(1S,2R)-2-decylcyclo-
propyl]-N,N-dimethylpentadecan-6-amine, N,N-dimethyl-
1-[(18,2R)-2-octylcyclopropyl]pentadecan-8-amine, R—N,
N-dimethyl-1-[(9Z,127)-octadeca-9,12-dien-1-yloxy]-3-
(octyloxy)propan-2-amine, S—N,N-dimethyl-1-[(9Z,127)-
octadeca-9,12-dien-1-yloxy]-3-(octyloxy)propan-2-amine,
1-{2-[(9Z,127)-0ctadeca-9,12-dien-1-yloxy]-1-[(octyloxy)
methyl]ethyl }pyrrolidine, (2S5)—N,N-dimethyl-1-[(9Z,
127)-octadeca-9,12-dien-1-yloxy]-3-[(5Z)-oct-5-en-1-
yloxy]propan-2-amine, 1-{2-[(9Z,127)-octadeca-9,12-dien-
1-yloxy]-1-[(octyloxy)methyl]ethyl }azetidine, (25)-1-
(hexyloxy)-N,N-dimethyl-3-[ (9Z,127)-octadeca-9,12-dien-
1-yloxy|propan-2-amine, (25)-1-(heptyloxy)-N,N-
dimethyl-3-[(97,127)-octadeca-9,12-dien-1-yloxy|propan-
2-amine, N,N-dimethyl-1-(nonyloxy)-3-[(97,127)-
octadeca-9,12-dien-1-yloxy|propan-2-amine, N,N-
dimethyl-1-[(9Z)-octadec-9-en-1-yloxy]-3-(octyloxy)
propan-2-amine; (25)—N,N-dimethyl-1-[(67,97,127)-
octadeca-6,9,12-trien-1-yloxy]-3-(octyloxy)propan-2-
amine, (2S)-1-[(11Z,147)-icosa-11,14-dien-1-yloxy]-N,N-
dimethyl-3-(pentyloxy)propan-2-amine, (2S)-1-(hexyloxy)-
3-[(11Z,147Z)-icosa-11,14-dien-1-yloxy]-N,N-
dimethylpropan-2-amine, 1-[(117,147)-icosa-11,14-dien-1-
yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, 1-[(13Z,
167)-docosa-13,16-dien-1-yloxy]-N,N-dimethyl-3-
(octyloxy)propan-2-amine, (2S)-1-[(13Z,16Z)-docosa-13,
16-dien-1-yloxy]-3-(hexyloxy)-N,N-dimethylpropan-2-
amine, (2S)-1-[(13Z)-docos-13-en-1-yloxy]-3-(hexyloxy)-
N,N-dimethylpropan-2-amine, 1-[(13Z)-docos-13-en-1-
yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, 1-[(97)-
hexadec-9-en-1-yloxy]-N,N-dimethyl-3-(octyloxy)propan-
2-amine, (2R)—N,N-dimethyl-H(1-metoylo ctyl)oxy]-3-
[(9Z,127)-octadeca-9,12-dien-1-yloxy]|propan-2-amine,
(2R)-1-[(3,7-dimethyloctyl)oxy]-N,N-dimethyl-3-[(9Z,
127)-octadeca-9,12-dien-1-yloxy|propan-2-amine, ~ N,N-
dimethyl-1-(octyloxy)-3-({8-[(1S,2S)-2-{[(1R,2R)-2-pen-
tylcyclopropyl]methyl}cyclopropyl]octyl }oxy )propan-2-
amine, N,N-dimethyl-1-{[8-(2-oclylcyclopropyl)octyl]
oxy }-3-(octyloxy)propan-2-amine and (11E,20Z7,237)—N,
N-dimethylnonacosa-11,20,2-trien-10-amine or a
pharmaceutically acceptable salt or stereoisomer thereof.

In one embodiment, the lipid may be a cleavable lipid such
as those described in International Publication No.
W02012170889, herein incorporated by reference in its
entirety.

In one embodiment, the cationic lipid may be synthesized
by methods known in the art and/or as described in Interna-
tional Publication Nos. W02012040184, W(0O2011153120,
WO02011149733, W02011090965, W02011043913,
W02011022460, W02012061259, W02012054365,
W02012044638, W02010080724 and W0O201021865; each
of' which is herein incorporated by reference in their entirety.

In one embodiment, the LNP formulations of the poly-
nucleotides, primary constructs and/or mmRNA may contain
PEG-c-DOMG at 3% lipid molar ratio. In another embodi-
ment, the LNP formulations polynucleotides, primary con-
structs and/or mmRNA may contain PEG-c-DOMG at 1.5%
lipid molar ratio.

In one embodiment, the pharmaceutical compositions of
the polynucleotides, primary constructs and/or mmRNA may
include at least one of the PEGylated lipids described in
International Publication No. 2012099755, herein incorpo-
rated by reference.

In one embodiment, the LNP formulation may contain
PEG-DMG 2000 (1,2-dimyristoyl-sn-glycero-3-phophoet-
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hanolamine-N-[methoxy(polyethylene glycol)-2000). In one
embodiment, the LNP formulation may contain PEG-DMG
2000, a cationic lipid known in the art and at least one other
component. In another embodiment, the LNP formulation
may contain PEG-DMG 2000, a cationic lipid known in the
art, DSPC and cholesterol. As a non-limiting example, the
LNP formulation may contain PEG-DMG 2000, DLin-
DMA, DSPC and cholesterol. As another non-limiting
example the LNP formulation may contain PEG-DMG 2000,
DLin-DMA, DSPC and cholesterol in a molar ratio of 2:40:
10:48 (see e.g., Geall et al., Nonviral delivery of self-ampli-
fying RNA vaccines, PNAS 2012; PMID: 22908294; herein
incorporated by reference in its entirety). As another non-
limiting example, modified RNA described herein may be
formulated in a nanoparticle to be delivered by a parenteral
route as described in U.S. Pub. No. 20120207845, herein
incorporated by reference in its entirety.

In one embodiment, the LNP formulation may be formulated
by the methods described in International Publication Nos.
W02011127255 or WO2008103276, each of which is herein
incorporated by reference in their entirety. As a non-limiting
example, modified RNA described herein may be encapsu-
lated in LNP formulations as described in W02011127255
and/or W0O2008103276; each of which is herein incorporated
by reference in their entirety.

In one embodiment, LNP formulations described herein may
comprise a polycationic composition. As a non-limiting
example, the polycationic composition may be selected from
formula I-60 of US Patent Publication No. US20050222064;
herein incorporated by reference in its entirety. In another
embodiment, the LNP formulations comprising a polyca-
tionic composition may be used for the delivery of the modi-
fied RNA described herein in vivo and/or in vitro.

In one embodiment, the LNP formulations described
herein may additionally comprise a permeability enhancer
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In one embodiment, the pharmaceutical compositions may
be formulated in liposomes such as, but not limited to, Dil.a2
liposomes (Marina Biotech, Bothell, Wash.), SMAR-
TICLES® (Marina Biotech, Bothell, Wash.), neutral DOPC
(1,2-dioleoyl-sn-glycero-3-phosphocholine) based lipo-
somes (e.g., siIRNA delivery for ovarian cancer (Landen et al.
Cancer Biology & Therapy 2006 5(12)1708-1713); herein
incorporated by reference in its entirety) and hyaluronan-
coated liposomes (Quiet Therapeutics, Israel).

The nanoparticle formulations may be a carbohydrate
nanoparticle comprising a carbohydrate carrier and a modi-
fied nucleic acid molecule (e.g., mmRNA). As a non-limiting
example, the carbohydrate carrier may include, but is not
limited to, an anhydride-modified phytoglycogen or glyco-
gen-type material, phtoglycogen octenyl succinate, phytogly-
cogen beta-dextrin, anhydride-modified phytoglycogen beta-

dextrin. (See e.g., International Publication No.
WO02012109121; herein incorporated by reference in its
entirety).

Lipid nanoparticle formulations may be improved by
replacing the cationic lipid with a biodegradable cationic
lipid which is known as a rapidly eliminated lipid nanopar-
ticle (reLNP). Ionizable cationic lipids, such as, but not lim-
ited to, DLinDMA, DLin-KC2-DMA, and DLin-MC3-
DMA, have been shown to accumulate in plasma and tissues
over time and may be a potential source of toxicity. The rapid
metabolism of the rapidly eliminated lipids can improve the
tolerability and therapeutic index of the lipid nanoparticles by
anorder of magnitude from a 1 mg/kgdoseto a 10 mg/kg dose
in rat. Inclusion of an enzymatically degraded ester linkage
can improve the degradation and metabolism profile of the
cationic component, while still maintaining the activity ofthe
reLNP formulation. The ester linkage can be internally
located within the lipid chain or it may be terminally located
at the terminal end of the lipid chain. The internal ester link-
age may replace any carbon in the lipid chain.

In one embodiment, the internal ester linkage may be
located on either side of the saturated carbon. Non-limiting
examples of reL.NPs include,

szﬁw

|W

/ O

molecule. Non-limiting permeability enhancer molecules are
described in US Patent Publication No. US20050222064;
herein incorporated by reference in its entirety.
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In one embodiment, an immune response may be elicited
by delivering a lipid nanoparticle which may include a nano-
species, a polymer and an immunogen. (U.S. Publication No.
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20120189700 and  International  Publication No.
W02012099805; each of which is herein incorporated by
reference in their entirety). The polymer may encapsulate the
nanospecies or partially encapsulate the nanospecies. The
immunogen may be a recombinant protein, a modified RNA
and/or a primary construct described herein. In one embodi-
ment, the lipid nanoparticle may be formulated for use in a
vaccine such as, but not limited to, against a pathogen.

Lipid nanoparticles may be engineered to alter the surface
properties of particles so the lipid nanoparticles may pen-
etrate the mucosal barrier. Mucus is located on mucosal tissue
such as, but not limited to, oral (e.g., the buccal and esoph-
ageal membranes and tonsil tissue), ophthalmic, gastrointes-
tinal (e.g., stomach, small intestine, large intestine, colon,
rectum), nasal, respiratory (e.g., nasal, pharyngeal, tracheal
and bronchial membranes), genital (e.g., vaginal, cervical and
urethral membranes). Nanoparticles larger than 10-200 nm
which are preferred for higher drug encapsulation efficiency
and the ability to provide the sustained delivery of a wide
array of drugs have been thought to be too large to rapidly
diffuse through mucosal barriers. Mucus is continuously
secreted, shed, discarded or digested and recycled so most of
the trapped particles may be removed from the mucosla tissue
within seconds or within a few hours. Large polymeric nano-
particles (200 nm-500 nm in diameter) which have been
coated densely with a low molecular weight polyethylene
glycol (PEG) diffused through mucus only 4 to 6-fold lower
than the same particles diffusing in water (Lai et al. PNAS
2007 104(5):1482-487; Lai et al. Adv Drug Deliv Rev. 2009
61(2): 158-171; each of which is herein incorporated by ref-
erence in their entirety). The transport of nanoparticles may
be determined using rates of permeation and/or fluorescent
microscopy techniques including, but not limited to, fluores-
cence recovery after photobleaching (FRAP) and high reso-
Iution multiple particle tracking (MPT). As a non-limiting
example, compositions which can penetrate a mucosal barrier
may be made as described in U.S. Pat. No. 8,241,670, herein
incorporated by reference in its entirety.

The lipid nanoparticle engineered to penetrate mucus may
comprise a polymeric material (i.e. a polymeric core) and/or
a polymer-vitamin conjugate and/or a tri-block co-polymer.
The polymeric material may include, but is not limited to,
polyamines, polyethers, polyamides, polyesters, polycar-
bamates, polyureas, polycarbonates, poly(styrenes), polyim-
ides, polysulfones, polyurethanes, polyacetylenes, polyeth-
ylenes, polyethyeneimines, polyisocyanates, polyacrylates,
polymethacrylates, polyacrylonitriles, and polyarylates. The
polymeric material may be biodegradable and/or biocompat-
ible. The polymeric material may additionally be irradiated.
As a non-limiting example, the polymeric material may be
gamma irradiated (See e.g., International App. No.
WO0201282165, herein incorporated by reference in its
entirety). Non-limiting examples of specific polymers
include poly(caprolactone) (PCL), ethylene vinyl acetate
polymer (EVA), poly(lactic acid) (PLA), poly(L-lactic acid)
(PLLA), poly(glycolic acid) (PGA), poly(lactic acid-co-gly-
colic acid) (PLGA), poly(L-lactic acid-co-glycolic acid)
(PLLGA), poly(D,L-lactide) (PDLA), poly(L-lactide)
(PLLA), poly(D,L-lactide-co-caprolactone), poly(D,L-lac-
tide-co-caprolactone-co-glycolide),  poly(D,L-lactide-co-
PEO-co-D,L-lactide), poly(D,L-lactide-co-PPO-co-D,L-lac-
tide), polyalkyl cyanoacralate, polyurethane, poly-L-lysine
(PLL), hydroxypropyl methacrylate (HPMA), polyethyl-
eneglycol, poly-L-glutamic acid, poly(hydroxy acids), poly-
anhydrides, polyorthoesters, poly(ester amides), polyamides,
poly(ester ethers), polycarbonates, polyalkylenes such as
polyethylene and polypropylene, polyalkylene glycols such
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as poly(ethylene glycol) (PEG), polyalkylene oxides (PEO),
polyalkylene terephthalates such as poly(ethylene terephtha-
late), polyvinyl alcohols (PVA), polyvinyl ethers, polyvinyl
esters such as poly(vinyl acetate), polyvinyl halides such as
poly(vinyl chloride) (PVC), polyvinylpyrrolidone, polysilox-
anes, polystyrene (PS), polyurethanes, derivatized celluloses
such as alkyl celluloses, hydroxyalkyl celluloses, cellulose
ethers, cellulose esters, nitro celluloses, hydroxypropylcellu-
lose, carboxymethylcellulose, polymers of acrylic acids, such
as poly(methyl(meth)acrylate) (PMMA), poly(ethyl(meth)
acrylate), poly(butyl(meth)acrylate), poly(isobutyl(meth)
acrylate), poly(hexyl(meth)acrylate), poly(isodecyl(meth)
acrylate), poly(lauryl(meth)acrylate), poly(phenyl(meth)
acrylate), poly(methyl acrylate), poly(isopropyl acrylate),
poly(isobutyl acrylate), poly(octadecyl acrylate) and copoly-
mers and mixtures thereof, polydioxanone and its copoly-
mers, polyhydroxyalkanoates, polypropylene fumarate,
polyoxymethylene, poloxamers, poly(ortho)esters, poly(bu-
tyric acid), poly(valeric acid), poly(lactide-co-caprolactone),
and trimethylene carbonate, polyvinylpyrrolidone. The lipid
nanoparticle may be coated or associated with a co-polymer
such as, but not limited to, a block co-polymer (such as a
branched polyether-polyamide block copolymer described in
International Publication No. W(02013012476, herein incor-
porated by reference in its entirety), and (poly(ethylene gly-
col))-(poly(propylene oxide))-(poly(ethylene glycol)) tri-
block copolymer (see e.g., US Publication 20120121718 and
US Publication 20100003337 and U.S. Pat. No. 8,263,665;
each of which is herein incorporated by reference in their
entirety). The co-polymer may be a polymer that is generally
regarded as safe (GRAS) and the formation of the lipid nano-
particle may be in such a way that no new chemical entities
are created. For example, the lipid nanoparticle may comprise
poloxamers coating PLGA nanoparticles without forming
new chemical entities which are still able to rapidly penetrate
human mucus (Yang et al. Angew. Chem. Int. Ed. 2011
50:2597-2600; herein incorporated by reference in its
entirety).

The vitamin of the polymer-vitamin conjugate may be
vitamin E. The vitamin portion of the conjugate may be
substituted with other suitable components such as, but not
limited to, vitamin A, vitamin E, other vitamins, cholesterol,
a hydrophobic moiety, or a hydrophobic component of other
surfactants (e.g., sterol chains, fatty acids, hydrocarbon
chains and alkylene oxide chains).

The lipid nanoparticle engineered to penetrate mucus may
include surface altering agents such as, but not limited to,
mmRNA, anionic proteins (e.g., bovine serum albumin), sur-
factants (e.g., cationic surfactants such as for example dim-
ethyldioctadecyl-ammonium bromide), sugars or sugar
derivatives (e.g., cyclodextrin), nucleic acids, polymers (e.g.,
heparin, polyethylene glycol and poloxamer), mucolytic
agents (e.g., N-acetylcysteine, mugwort, bromelain, papain,
clerodendrum, acetylcysteine, bromhexine, carbocisteine,
eprazinone, mesna, ambroxol, sobrerol, domiodol, letosteine,
stepronin, tiopronin, gelsolin, thymosin 4 dornase alfa,
neltenexine, erdosteine) and various DNases including rhD-
Nase. The surface altering agent may be embedded or
enmeshed in the particle’s surface or disposed (e.g., by coat-
ing, adsorption, covalent linkage, or other process) on the
surface of the lipid nanoparticle. (see e.g., US Publication
20100215580 and US Publication 20080166414; each of
which is herein incorporated by reference in their entirety).

The mucus penetrating lipid nanoparticles may comprise at
least one mmRNA described herein. The mmRNA may be
encapsulated in the lipid nanoparticle and/or disposed on the
surface of the particle. The mmRNA may be covalently



US 9,050,297 B2

205

coupled to the lipid nanoparticle. Formulations of mucus
penetrating lipid nanoparticles may comprise a plurality of
nanoparticles. Further, the formulations may contain par-
ticles which may interact with the mucus and alter the struc-
tural and/or adhesive properties of the surrounding mucus to
decrease mucoadhesion which may increase the delivery of
the mucus penetrating lipid nanoparticles to the mucosal tis-
sue.

In one embodiment, the polynucleotide, primary construct,
or mmRNA is formulated as a lipoplex, such as, without
limitation, the ATUPLEX™ system, the DACC system, the
DBTC system and other siRNA-lipoplex technology from
Silence Therapeutics (London, United Kingdom), STEM-
FECT™ from STEMGENT® (Cambridge, Mass.), and poly-
ethylenimine (PEI) or protamine-based targeted and non-
targeted delivery of nucleic acids (Aleku et al. Cancer Res.
2008 68:9788-9798; Strumberg et al. Int J Clin Pharmacol
Ther 2012 50:76-78; Santel et al., Gene Ther 2006 13:1222-
1234; Santel et al., Gene Ther 2006 13:1360-1370; Gutbier et
al., Pulm Pharmacol. Ther. 2010 23:334-344; Kaufmann et al.
Microvasc Res 2010 80:286-293 Weide et al. J. Immunother.
2009 32:498-507; Weide et al. J. Immunother. 2008 31:180-
188; Pascolo Expert Opin. Biol. Ther. 4:1285-1294; Fotin-
Mleczek et al., 2011 J. Immunother. 34:1-15; Song et al.,
Nature Biotechnol. 2005, 23:709-717; Peer et al., Proc Natl
Acad Sci USA. 2007 6; 104:4095-4100; deFougerolles Hum
Gene Ther. 2008 19:125-132; all of which are incorporated
herein by reference in its entirety).

In one embodiment such formulations may also be con-
structed or compositions altered such that they passively or
actively are directed to different cell types in vivo, including
but not limited to hepatocytes, immune cells, tumor cells,
endothelial cells, antigen presenting cells, and leukocytes
(Akinc et al. Mol. Ther. 2010 18:1357-1364; Song et al., Nat.
Biotechnol. 2005 23:709-717; Judge et al., ] Clin Invest. 2009
119:661-673; Kaufmann et al., Microvasc Res 2010 80:286-
293; Santel et al., Gene Ther 2006 13:1222-1234; Santel et
al., Gene Ther 2006 13:1360-1370; Gutbier et al., Pulm Phar-
macol. Ther. 2010 23:334-344; Basha et al., Mol. Ther. 2011
19:2186-2200; Fenske and Cullis, Expert Opin Drug Deliv.
2008 5:25-44; Peer et al., Science. 2008 319:627-630; Peer
and Lieberman, Gene Ther. 2011 18:1127-1133; all of which
are incorporated herein by reference in its entirety). One
example of passive targeting of formulations to liver cells
includes the DLin-DMA, DLin-KC2-DMA and DLin-MC3-
DMA -based lipid nanoparticle formulations which have been
shown to bind to apolipoprotein E and promote binding and
uptake of these formulations into hepatocytes in vivo (Akinc
et al. Mol. Ther. 2010 18:1357-1364; herein incorporated by
reference in its entirety). Formulations can also be selectively
targeted through expression of different ligands on their sur-
face as exemplified by, but not limited by, folate, transferrin,
N-acetylgalactosamine (GalNAc), and antibody targeted
approaches (Kolhatkar et al., Curr Drug Discov Technol.
2011 8:197-206; Musacchio and Torchilin, Front Biosci.
2011 16:1388-1412;Yu et al., Mol Membr Biol. 2010 27:286-
298; Patil et al., Crit. Rev Ther Drug Carrier Syst. 2008
25:1-61; Benoit et al., Biomacromolecules. 2011 12:2708-
2714; Zhao et al., Expert Opin Drug Deliv. 2008 5:309-319;
Akinc et al., Mol. Ther. 2010 18:1357-1364; Srinivasan et al.,
Methods Mol. Biol. 2012 820:105-116; Ben-Arie et al.,
Methods Mol. Biol. 2012 757:497-507; Peer 2010 J Control
Release. 20:63-68; Peer et al., Proc Natl Acad Sci USA. 2007
104:4095-4100; Kim et al., Methods Mol. Biol. 2011 721:
339-353; Subramanya et al., Mol. Ther. 2010 18:2028-2037;
Song et al., Nat. Biotechnol. 2005 23:709-717; Peer et al.,
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Science. 2008 319:627-630; Peer and Lieberman, Gene Ther.
2011 18:1127-1133; all of which are incorporated herein by
reference in its entirety).

In one embodiment, the polynucleotide, primary construct,
ormmRNA is formulated as a solid lipid nanoparticle. A solid
lipid nanoparticle (SLN) may be spherical with an average
diameter between 10 to 1000 nm. SLN possess a solid lipid
core matrix that can solubilize lipophilic molecules and may
be stabilized with surfactants and/or emulsifiers. In a further
embodiment, the lipid nanoparticle may be a self-assembly
lipid-polymer nanoparticle (see Zhang et al., ACS Nano,
2008, 2 (8), pp 1696-1702; herein incorporated by reference
in its entirety).

Liposomes, lipoplexes, or lipid nanoparticles may be used
to improve the efficacy of polynucleotide, primary construct,
ormmRNA directed protein production as these formulations
may be able to increase cell transfection by the polynucle-
otide, primary construct, or mmRNA; and/or increase the
translation of encoded protein. One such example involves
the use oflipid encapsulation to enable the effective systemic
delivery of polyplex plasmid DNA (Heyes et al., Mol. Ther.
2007 15:713-720; herein incorporated by reference in its
entirety). The liposomes, lipoplexes, or lipid nanoparticles
may also be used to increase the stability of the polynucle-
otide, primary construct, or mmRNA.

In one embodiment, the polynucleotides, primary con-
structs, and/or the mmRNA of the present invention can be
formulated for controlled release and/or targeted delivery. As
used herein, “controlled release” refers to a pharmaceutical
composition or compound release profile that conforms to a
particular pattern of release to effect a therapeutic outcome.
In one embodiment, the polynucleotides, primary constructs
or the mmRNA may be encapsulated into a delivery agent
described herein and/or known in the art for controlled release
and/or targeted delivery. As used herein, the term “encapsu-
late” means to enclose, surround or encase. As it relates to the
formulation of the compounds of the invention, encapsulation
may be substantial, complete or partial. The term “substan-
tially encapsulated” means that at least greater than 50, 60,
70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.9 or greater than
99.999% of the pharmaceutical composition or compound of
the invention may be enclosed, surrounded or encased within
the delivery agent. “Partially encapsulation” means that less
than 10, 10, 20, 30, 40 50 or less of the pharmaceutical
composition or compound of the invention may be enclosed,
surrounded or encased within the delivery agent. Advanta-
geously, encapsulation may be determined by measuring the
escape or the activity of the pharmaceutical composition or
compound of the invention using fluorescence and/or electron
micrograph. For example, at least 1, 5, 10, 20, 30, 40, 50, 60,
70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.99 or greater than
99.99% of the pharmaceutical composition or compound of
the invention are encapsulated in the delivery agent.

In one embodiment, the controlled release formulation
may include, but is not limited to, tri-block co-polymers. As a
non-limiting example, the formulation may include two dif-
ferent types of tri-block co-polymers (International Pub. No.
W02012131104 and W02012131106; each of which is
herein incorporated by reference in its entirety).

In another embodiment, the polynucleotides, primary con-
structs, or the mmRNA may be encapsulated into a lipid
nanoparticle or a rapidly eliminated lipid nanoparticle and the
lipid nanoparticles or a rapidly eliminated lipid nanoparticle
may then be encapsulated into a polymer, hydrogel and/or
surgical sealant described herein and/or known in the art. As
a non-limiting example, the polymer, hydrogel or surgical
sealant may be PLGA, ethylene vinyl acetate (EVAc), polox-
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amer, GELSITE®(Nanotherapeutics, Inc. Alachua, Fla.),
HYLENEX® (Halozyme Therapeutics, San Diego Calif.),
surgical sealants such as fibrinogen polymers (Ethicon Inc.
Cornelia, Ga.), TISSELL® (Baxter International, Inc Deer-
field, I11.), PEG-based sealants, and COSEAL® (Baxter Inter-
national, Inc Deerfield, IlL.).

In another embodiment, the lipid nanoparticle may be
encapsulated into any polymer known in the art which may
form a gel when injected into a subject. As another non-
limiting example, the lipid nanoparticle may be encapsulated
into a polymer matrix which may be biodegradable.

In one embodiment, the polynucleotide, primary construct,
ormmRNA formulation for controlled release and/or targeted
delivery may also include at least one controlled release coat-
ing. Controlled release coatings include, but are not limited
to, OPADRY®, polyvinylpyrrolidone/vinyl acetate copoly-
mer, polyvinylpyrrolidone, hydroxypropyl methylcellulose,
hydroxypropyl  cellulose,  hydroxyethyl  cellulose,
EUDRAGIT RL®, EUDRAGIT RS® and cellulose deriva-
tives such as ethylcellulose aqueous dispersions (AQUA-
COAT® and SURELEASE®).

In one embodiment, the controlled release and/or targeted
delivery formulation may comprise at least one degradable
polyester which may contain polycationic side chains.
Degradable polyesters include, but are not limited to, poly
(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-
L-proline ester), and combinations thereof. In another
embodiment, the degradable polyesters may include a PEG
conjugation to form a PEGylated polymer.

In one embodiment, the polynucleotides, primary con-
structs, and/or the mmRNA of the present invention may be
encapsulated in a therapeutic nanoparticle. Therapeutic nano-
particles may be formulated by methods described herein and
known in the art such as, but not limited to, International Pub

Nos. W0O2010005740, W0O2010030763, WO2010005721,
W02010005723, W02012054923, US Pub. Nos.
US20110262491, US20100104645, US20100087337,

US20100068285, US20110274759, US20100068286 and
US20120288541 and U.S. Pat. Nos. 8,206,747, 8,293,276,
8,318,208 and 8,318,211 each of which is herein incorporated
by reference in their entirety. In another embodiment, thera-
peutic polymer nanoparticles may be identified by the meth-
ods described in US Pub No. US20120140790, herein incor-
porated by reference in its entirety.

In one embodiment, the therapeutic nanoparticle may be
formulated for sustained release. As used herein, “sustained
release” refers to a pharmaceutical composition or compound
that conforms to a release rate over a specific period of time.
The period of time may include, but is not limited to, hours,
days, weeks, months and years. As a non-limiting example,
the sustained release nanoparticle may comprise a polymer
and a therapeutic agent such as, but not limited to, the poly-
nucleotides, primary constructs, and mmRNA of the present
invention (see International Pub No. 2010075072 and US Pub
No. US20100216804, US20110217377 and
US20120201859, each of which is herein incorporated by
reference in their entirety).

In one embodiment, the therapeutic nanoparticles may be
formulated to be target specific. As a non-limiting example,
the therapeutic nanoparticles may include a corticosteroid
(see International Pub. No. W02011084518; herein incorpo-
rated by reference in its entirety). In one embodiment, the
therapeutic nanoparticles may be formulated to be cancer
specific. As a non-limiting example, the therapeutic nanopar-
ticles may be formulated in nanoparticles described in Inter-
national Pub No. WO02008121949, WO02010005726,
W02010005725, W02011084521 and US Pub No.
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US20100069426, US20120004293 and US20100104655,
each of which is herein incorporated by reference in their
entirety.

In one embodiment, the nanoparticles of the present inven-
tion may comprise a polymeric matrix. As a non-limiting
example, the nanoparticle may comprise two or more poly-
mers such as, but not limited to, polyethylenes, polycarbon-
ates, polyanhydrides, polyhydroxyacids, polypropylfumer-
ates, polycaprolactones, polyamides, polyacetals, polyethers,
polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl
alcohols, polyurethanes, polyphosphazenes, polyacrylates,
polymethacrylates, polycyanoacrylates, polyureas, polysty-
renes, polyamines, polylysine, poly(ethylene imine), poly
(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-
L-proline ester) or combinations thereof.

In one embodiment, the therapeutic nanoparticle com-
prises a diblock copolymer. In one embodiment, the diblock
copolymer may include PEG in combination with a polymer
such as, but not limited to, polyethylenes, polycarbonates,
polyanhydrides, polyhydroxyacids, polypropylfumerates,
polycaprolactones, polyamides, polyacetals, polyethers,
polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl
alcohols, polyurethanes, polyphosphazenes, polyacrylates,
polymethacrylates, polycyanoacrylates, polyureas, polysty-
renes, polyamines, polylysine, poly(ethylene imine), poly
(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-
L-proline ester) or combinations thereof.

As a non-limiting example the therapeutic nanoparticle
comprises a PLGA-PEG block copolymer (see US Pub. No.
US20120004293 and U.S. Pat. No. 8,236,330, each of which
is herein incorporated by reference in their entirety). In
another non-limiting example, the therapeutic nanoparticle is
a stealth nanoparticle comprising a diblock copolymer of
PEG and PLA or PEG and PLGA (see U.S. Pat. No. 8,246,
968 and International Publication No. W02012166923, each
of which is herein incorporated by reference in its entirety).

In one embodiment, the therapeutic nanoparticle may com-
prise a multiblock copolymer (See e.g., U.S. Pat. Nos. 8,263,
665 and 8,287,910; each of which is herein incorporated by
reference in its entirety).

In one embodiment, the block copolymers described
herein may be included in a polyion complex comprising a
non-polymeric micelle and the block copolymer. (See e.g.,
U.S. Pub. No. 20120076836; herein incorporated by refer-
ence in its entirety).

In one embodiment, the therapeutic nanoparticle may com-
prise at least one acrylic polymer. Acrylic polymers include
but are not limited to, acrylic acid, methacrylic acid, acrylic
acid and methacrylic acid copolymers, methyl methacrylate
copolymers, ethoxyethyl methacrylates, cyanoethyl meth-
acrylate, amino alkyl methacrylate copolymer, poly(acrylic
acid), poly(methacrylic acid), polycyanoacrylates and com-
binations thereof.

In one embodiment, the therapeutic nanoparticles may
comprise at least one cationic polymer described herein and/
or known in the art.

In one embodiment, the therapeutic nanoparticles may
comprise at least one amine-containing polymer such as, but
not limited to polylysine, polyethylene imine, poly(ami-
doamine) dendrimers, poly(beta-amino esters) (Seee.g., U.S.
Pat. No. 8,287,849; herein incorporated by reference in its
entirety) and combinations thereof.

In one embodiment, the therapeutic nanoparticles may
comprise at least one degradable polyester which may con-
tain polycationic side chains. Degradable polyesters include,
but are not limited to, poly(serine ester), poly(L-lactide-co-
L-lysine), poly(4-hydroxy-L-proline ester), and combina-
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tions thereof. In another embodiment, the degradable polyes-
ters may include a PEG conjugation to form a PEGylated
polymer.

In another embodiment, the therapeutic nanoparticle may
include a conjugation of at least one targeting ligand. The
targeting ligand may be any ligand known in the art such as,
but not limited to, a monoclonal antibody. (Kirpotin et al,
Cancer Res. 2006 66:6732-6740; herein incorporated by ref-
erence in its entirety).

In one embodiment, the therapeutic nanoparticle may be
formulated in an aqueous solution which may be used to
target cancer (see International Pub No. W02011084513 and
US Pub No. US20110294717, each of which is herein incor-
porated by reference in their entirety).

In one embodiment, the polynucleotides, primary con-
structs, or mmRNA may be encapsulated in, linked to and/or
associated with synthetic nanocarriers. Synthetic nanocarri-
ers include, but are not limited to, those described in Interna-

tional Pub. Nos. WO02010005740, W02010030763,
WO0201213501, WO02012149252, WO02012149255,
WO02012149259, W02012149265, W02012149268,
WO02012149282, W02012149301, W02012149393,
W02012149405, W02012149411, W02012149454 and
W02013019669, and US Pub. Nos. US20110262491,
US20100104645, US20100087337 and US20120244222,

each of which is herein incorporated by reference in their
entirety. The synthetic nanocarriers may be formulated using
methods known in the art and/or described herein. As a non-
limiting example, the synthetic nanocarriers may be formu-
lated by the methods described in International Pub Nos.
W02010005740, WO2010030763 and W0201213501 and
US Pub. Nos. US20110262491, US20100104645,
US20100087337 and US2012024422, each of which is
herein incorporated by reference in their entirety. In another
embodiment, the synthetic nanocarrier formulations may be
lyophilized by methods described in International Pub. No.
W02011072218 and U.S. Pat. No. 8,211,473; each of which
is herein incorporated by reference in their entirety.

In one embodiment, the synthetic nanocarriers may con-
tain reactive groups to release the polynucleotides, primary
constructs and/or mmRNA described herein (see Interna-
tional Pub. No. W020120952552 and US Pub No.
US20120171229, each of which is herein incorporated by
reference in their entirety).

In one embodiment, the synthetic nanocarriers may con-
tain an immunostimulatory agent to enhance the immune
response from delivery of the synthetic nanocarrier. As a
non-limiting example, the synthetic nanocarrier may com-
prise a Th1l immunostimulatory agent which may enhance a
Th1-based response of the immune system (see International
Pub No. W02010123569 and US Pub. No. US20110223201,
each of which is herein incorporated by reference in its
entirety).

In one embodiment, the synthetic nanocarriers may be
formulated for targeted release. In one embodiment, the syn-
thetic nanocarrier is formulated to release the polynucle-
otides, primary constructs and/or mmRNA at a specified pH
and/or after a desired time interval. As a non-limiting
example, the synthetic nanoparticle may be formulated to
release the polynucleotides, primary constructs and/or
mmRNA after 24 hours and/or at a pH of 4.5 (see Interna-
tional Pub. Nos. W02010138193 and W02010138194 and
US Pub Nos. US20110020388 and US20110027217, each of
which is herein incorporated by reference in their entireties).

In one embodiment, the synthetic nanocarriers may be
formulated for controlled and/or sustained release of the
polynucleotides, primary constructs and/or mmRNA

10

15

20

25

30

35

40

45

210

described herein. As a non-limiting example, the synthetic
nanocarriers for sustained release may be formulated by
methods known in the art, described herein and/or as
described in International Pub No. W02010138192 and US
Pub No. 20100303850, each of which is herein incorporated
by reference in their entirety.

In one embodiment, the synthetic nanocarrier may be for-
mulated for use as a vaccine. In one embodiment, the syn-
thetic nanocarrier may encapsulate at least one polynucle-
otide, primary construct and/or mmRNA which encode at
least one antigen. As a non-limiting example, the synthetic
nanocarrier may include at least one antigen and an excipient
for a vaccine dosage form (see International Pub No.
WO02011150264 and US Pub No. US20110293723, each of
which is herein incorporated by reference in their entirety).
As another non-limiting example, a vaccine dosage form may
include at least two synthetic nanocarriers with the same or
different antigens and an excipient (see International Pub No.
W02011150249 and US Pub No. US20110293701, each of
which is herein incorporated by reference in their entirety).
The vaccine dosage form may be selected by methods
described herein, known in the art and/or described in Inter-
national Pub No. WO02011150258 and US Pub No.
US20120027806, each of which is herein incorporated by
reference in their entirety).

In one embodiment, the synthetic nanocarrier may com-
prise at least one polynucleotide, primary construct and/or
mmRNA which encodes at least one adjuvant. As non-limit-
ing example, the adjuvant may comprise dimethyldioctade-
cylammonium-bromide, dimethyldioctadecylammonium-
chloride, dimethyldioctadecylammonium-phosphate or
dimethyldioctadecylammonium-acetate (DDA) and an apo-
lar fraction or part of said apolar fraction of a total lipid extract
of'a mycobacterium (See e.g, U.S. Pat. No. 8,241,610; herein
incorporated by reference in its entirety). In another embodi-
ment, the synthetic nanocarrier may comprise at least one
polynucleotide, primary construct and/or mmRNA and an
adjuvant. As a non-limiting example, the synthetic nanocar-
rier comprising and adjuvant may be formulated by the meth-
ods described in International Pub No. W02011150240 and
US Pub No. US20110293700, each of which is herein incor-
porated by reference in its entirety.

In one embodiment, the synthetic nanocarrier may encap-
sulate at least one polynucleotide, primary construct and/or
mmRNA which encodes a peptide, fragment or region from a
virus. As a non-limiting example, the synthetic nanocarrier
may include, but is not limited to, the nanocarriers described
in International Pub No. W02012024621, W0201202629,
W02012024632 and US Pub No. US20120064110,
US20120058153 and US20120058154, each of which is
herein incorporated by reference in their entirety.

In one embodiment, the synthetic nanocarrier may be
coupled to a polynucleotide, primary construct or mmRNA
which may be able to trigger a humoral and/or cytotoxic T
lymphocyte (CTL) response (See e.g., International Publica-
tion No. WO2013019669, herein incorporated by reference in
its entirety).

In one embodiment, the nanoparticle may be optimized for
oral administration. The nanoparticle may comprise at least
one cationic biopolymer such as, but not limited to, chitosan
or a derivative thereof. As a non-limiting example, the nano-
particle may be formulated by the methods described in U.S.
Pub. No. 20120282343; herein incorporated by reference in
its entirety.
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Polymers, Biodegradable Nanoparticles, and Core-Shell
Nanoparticles

The polynucleotide, primary construct, and mmRNA of
the invention can be formulated using natural and/or synthetic
polymers. Non-limiting examples of polymers which may be
used for delivery include, but are not limited to, DYNAMIC
POLYCONJUGATE® (Arrowhead Research Corp., Pasa-
dena, Calif.) formulations from MIRUS® Bio (Madison,
Wis.) and Roche Madison (Madison, Wis.), PHASERX™
polymer formulations such as, without limitation, SMARTT
POLYMER TECHNOLOGY™ (PHASERX®, Seattle,
Wash.), DMRI/DOPE, poloxamer, VAXFECTIN® adjuvant
from Vical (San Diego, Calif.), chitosan, cyclodextrin from
Calando Pharmaceuticals (Pasadena, Calif.), dendrimers and
poly(lactic-co-glycolic acid) (PLGA) polymers. RONDEL™
(RNAi/Oligonucleotide Nanoparticle Delivery) polymers
(Arrowhead Research Corporation, Pasadena, Calif.) and pH
responsive co-block polymers such as, but not limited to,
PHASERX® (Seattle, Wash.).

A non-limiting example of chitosan formulation includes a
core of positively charged chitosan and an outer portion of
negatively charged substrate (U.S. Pub. No. 20120258176;
herein incorporated by reference in its entirety). Chitosan
includes, but is not limited to N-trimethyl chitosan, mono-N-
carboxymethyl chitosan (MCC), N-palmitoyl chitosan
(NPCS), EDTA-chitosan, low molecular weight chitosan,
chitosan derivatives, or combinations thereof.

In one embodiment, the polymers used in the present
invention have undergone processing to reduce and/or inhibit
the attachment of unwanted substances such as, but not lim-
ited to, bacteria, to the surface of the polymer. The polymer
may be processed by methods known and/or described in the
art and/or described in International Pub. No.
WO02012150467, herein incorporated by reference in its
entirety.

A non-limiting example of PLGA formulations include,
but are not limited to, PLGA injectable depots (e.g., ELI-
GARD® which is formed by dissolving PL.GA in 66% N-me-
thyl-2-pyrrolidone (NMP) and the remainder being aqueous
solvent and leuprolide. Once injected, the PLGA and leupro-
lide peptide precipitates into the subcutaneous space).

Many ofthese polymer approaches have demonstrated effi-
cacy in delivering oligonucleotides in vivo into the cell cyto-
plasm (reviewed in deFougerolles Hum Gene Ther 2008
19:125-132; herein incorporated by reference in its entirety).
Two polymer approaches that have yielded robust in vivo
delivery of nucleic acids, in this case with small interfering
RNA (siRNA), are dynamic polyconjugates and cyclodex-
trin-based nanoparticles. The first of these delivery
approaches uses dynamic polyconjugates and has been
shown in vivo in mice to effectively deliver siRNA and
silence endogenous target mRNA in hepatocytes (Rozema et
al., Proc Natl Acad Sci USA. 2007 104:12982-12887; herein
incorporated by reference in its entirety). This particular
approach is a multicomponent polymer system whose key
features include a membrane-active polymer to which nucleic
acid, in this case siRNA, is covalently coupled via a disulfide
bond and where both PEG (for charge masking) and N-acetyl-
galactosamine (for hepatocyte targeting) groups are linked
via pH-sensitive bonds (Rozema et al., Proc Natl Acad Sci
USA. 2007 104:12982-12887; herein incorporated by refer-
ence in its entirety). On binding to the hepatocyte and entry
into the endosome, the polymer complex disassembles in the
low-pH environment, with the polymer exposing its positive
charge, leading to endosomal escape and cytoplasmic release
of'the siRNA from the polymer. Through replacement of the
N-acetylgalactosamine group with a mannose group, it was
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shown one could alter targeting from asialoglycoprotein
receptor-expressing hepatocytes to sinusoidal endothelium
and Kupfter cells. Another polymer approach involves using
transferrin-targeted  cyclodextrin-containing  polycation
nanoparticles. These nanoparticles have demonstrated tar-
geted silencing of the EWS-FLI1 gene product in transferrin
receptor-expressing Ewing’s sarcoma tumor cells (Hu-
Lieskovan et al., Cancer Res. 2005 65: 8984-8982; herein
incorporated by reference in its entirety) and siRNA formu-
lated in these nanoparticles was well tolerated in non-human
primates (Heidel et al., Proc Natl Acad Sci USA 2007 104:
5715-21; herein incorporated by reference in its entirety).
Both of these delivery strategies incorporate rational
approaches using both targeted delivery and endosomal
escape mechanisms.

The polymer formulation can permit the sustained or
delayed release of polynucleotide, primary construct, or
mmRNA (e.g., following intramuscular or subcutaneous
injection). The altered release profile for the polynucleotide,
primary construct, or mmRNA can result in, for example,
translation of an encoded protein over an extended period of
time. The polymer formulation may also be used to increase
the stability of the polynucleotide, primary construct, or
mmRNA. Biodegradable polymers have been previously
used to protect nucleic acids other than mmRNA from deg-
radation and been shown to result in sustained release of
payloads in vivo (Rozema et al., Proc Natl Acad Sci USA.
2007 104:12982-12887; Sullivan et al., Expert Opin Drug
Deliv. 2010 7:1433-1446; Convertine et al., Biomacromol-
ecules. 2010 Oct. 1; Chu et al., Acc Chem. Res. 2012 Jan. 13;
Manganiello et al., Biomaterials. 2012 33:2301-2309; Benoit
etal., Biomacromolecules. 2011 12:2708-2714; Singhaetal.,
Nucleic Acid Ther. 2011 2:133-147; deFougerolles Hum
Gene Ther. 2008 19:125-132; Schaffert and Wagner, Gene
Ther. 2008 16:1131-1138; Chaturvedi et al., Expert Opin
Drug Deliv. 2011 8:1455-1468; Davis, Mol. Pharm. 2009
6:659-668; Davis, Nature 2010 464:1067-1070; each of
which is herein incorporated by reference in its entirety).

In one embodiment, the pharmaceutical compositions may
be sustained release formulations. In a further embodiment,
the sustained release formulations may be for subcutaneous
delivery. Sustained release formulations may include, but are
not limited to, PLGA microspheres, ethylene vinyl acetate
(EVAc), poloxamer, GELSITE® (Nanotherapeutics, Inc.
Alachua, Fla.), HYLENEX® (Halozyme Therapeutics, San
Diego Calif.), surgical sealants such as fibrinogen polymers
(Ethicon Inc. Cornelia, Ga.), TISSELL® (Baxter Interna-
tional, Inc Deerfield, I1l.), PEG-based sealants, and
COSEAL® (Baxter International, Inc Deerfield, I11.).

As a non-limiting example modified mRNA may be for-
mulated in PLGA microspheres by preparing the PLGA
microspheres with tunable release rates (e.g., days and
weeks) and encapsulating the modified mRNA in the PLGA
microspheres while maintaining the integrity of the modified
mRNA during the encapsulation process. EVAc are non-bio-
degradable, biocompatible polymers which are used exten-
sively in pre-clinical sustained release implant applications
(e.g., extended release products Ocusert a pilocarpine oph-
thalmic insert for glaucoma or progestasert a sustained
release progesterone intrauterine device; transdermal deliv-
ery systems Testoderm, Duragesic and Selegiline; catheters).
Poloxamer F-407 NF is a hydrophilic, non-ionic surfactant
triblock copolymer of polyoxyethylene-polyoxypropylene-
polyoxyethylene having a low viscosity at temperatures less
than 5° C. and forms a solid gel at temperatures greater than
15° C. PEG-based surgical sealants comprise two synthetic
PEG components mixed in a delivery device which can be
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prepared in one minute, seals in 3 minutes and is reabsorbed
within 30 days. GELSITE® and natural polymers are capable
of in-situ gelation at the site of administration. They have
been shown to interact with protein and peptide therapeutic
candidates through ionic interaction to provide a stabilizing
effect.

Polymer formulations can also be selectively targeted
through expression of different ligands as exemplified by, but
not limited by, folate, transferrin, and N-acetylgalactosamine
(GalNAc) (Benoit et al., Biomacromolecules. 2011 12:2708-
2714; Rozema et al., Proc Natl Acad Sci USA. 2007 104:
12982-12887; Davis, Mol. Pharm. 2009 6:659-668; Davis,
Nature 2010 464:1067-1070; each of which is herein incor-
porated by reference in its entirety).

The modified nucleic acid, and mmRNA of the invention
may be formulated with or in a polymeric compound. The
polymer may include at least one polymer such as, but not
limited to, polyethenes, polyethylene glycol (PEG), poly(1-
lysine) (PLL), PEG grafted to PLL, cationic lipopolymer,
biodegradable cationic lipopolymer, polyethyleneimine
(PEI), cross-linked branched poly(alkylene imines), a
polyamine derivative, a modified poloxamer, a biodegradable
polymer, elastic biodegradable polymer, biodegradable block
copolymer, biodegradable random copolymer, biodegradable
polyester copolymer, biodegradable polyester block copoly-
mer, biodegradable polyester block random copolymer,
multiblock copolymers, linear biodegradable copolymer,
poly[a-(4-aminobutyl)-L-glycolic acid) (PAGA), biodegrad-
able cross-linked cationic multi-block copolymers, polycar-
bonates, polyanhydrides, polyhydroxyacids, polypropylfum-
erates, polycaprolactones, polyamides, polyacetals,
polyethers, polyesters, poly(orthoesters), polycyanoacry-
lates, polyvinyl alcohols, polyurethanes, polyphosphazenes,
polyacrylates, polymethacrylates, polycyanoacrylates, poly-
ureas, polystyrenes, polyamines, polylysine, poly(ethylene
imine), poly(serine ester), poly(L-lactide-co-L-lysine), poly
(4-hydroxy-L-proline ester), acrylic polymers, amine-con-
taining polymers, dextran polymers, dextran polymer deriva-
tives or combinations thereof.

As a non-limiting example, the modified nucleic acid or
mmRNA of the invention may be formulated with the poly-
meric compound of PEG grafted with PLL as described in
U.S. Pat. No. 6,177,274 herein incorporated by reference in
its entirety. The formulation may be used for transfecting
cells in vitro or for in vivo delivery of the modified nucleic
acid and mmRNA.. In another example, the modified nucleic
acid and mmRNA may be suspended in a solution or medium
with a cationic polymer, in a dry pharmaceutical composition
or in a solution that is capable of being dried as described in
U.S. Pub. Nos. 20090042829 and 20090042825; each of
which are herein incorporated by reference in their entireties.

As another non-limiting example the polynucleotides, pri-
mary constructs or mmRNA of the invention may be formu-
lated with a PLGA-PEG block copolymer (see US Pub. No.
US20120004293 and U.S. Pat. No. 8,236,330, herein incor-
porated by reference in their entireties) or PLGA-PEG-PLGA
block copolymers (See U.S. Pat. No. 6,004,573, herein incor-
porated by reference in its entirety). As a non-limiting
example, the polynucleotides, primary constructs or
mmRNA of the invention may be formulated with a diblock
copolymer of PEG and PLLA or PEG and PLGA (see U.S. Pat.
No. 8,246,968, herein incorporated by reference in its
entirety).

A polyamine derivative may be used to deliver nucleic
acids or to treat and/or prevent a disease or to be included in
an implantable or injectable device (U.S. Pub. No.
20100260817 herein incorporated by reference in its
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entirety). As a non-limiting example, a pharmaceutical com-
position may include the modified nucleic acids and mmRNA
and the polyamine derivative described in U.S. Pub. No.
20100260817 (the contents of which are incorporated herein
by reference in its entirety. As a non-limiting example the
polynucleotides, primary constructs and mmRNA of the
present invention may be delivered using a polyaminde poly-
mer such as, but not limited to, a polymer comprising a
1,3-dipolar addition polymer prepared by combining a car-
bohydrate diazide monomer with a dilkyne unite comprising
oligoamines (U.S. Pat. No. 8,236,280; herein incorporated by
reference in its entirety).

In one embodiment, the polynucleotides, primary con-
structs or mmRNA of the present invention may be formu-
lated with at least one polymer and/or derivatives thereof
described in International Publication Nos. W0O2011115862,
W02012082574 and W02012068187 and U.S. Pub. No.
20120283427, each of which are herein incorporated by ref-
erence in their entireties. In another embodiment, the modi-
fied nucleic acid or mmRNA of'the present invention may be
formulated with a polymer of formula 7Z as described in
WO2011115862, herein incorporated by reference in its
entirety. In yet another embodiment, the modified nucleic
acid or mmRNA may be formulated with a polymer of for-
mula Z, 7' or Z" as described in International Pub. Nos.
W02012082574 or W02012068187 and U.S. Pub. No.
2012028342, each of which are herein incorporated by refer-
ence in their entireties. The polymers formulated with the
modified RNA ofthe present invention may be synthesized by
the methods described in International Pub. Nos.
W02012082574 or W02012068187, each of which are
herein incorporated by reference in their entireties.

The polynucleotides, primary constructs or mmRNA ofthe
invention may be formulated with at least one acrylic poly-
mer. Acrylic polymers include but are not limited to, acrylic
acid, methacrylic acid, acrylic acid and methacrylic acid
copolymers, methyl methacrylate copolymers, ethoxyethyl
methacrylates, cyanoethyl methacrylate, amino alkyl meth-
acrylate copolymer, poly(acrylic acid), poly(methacrylic
acid), polycyanoacrylates and combinations thereof.

Formulations of polynucleotides, primary constructs or
mmRNA of the invention may include at least one amine-
containing polymer such as, but not limited to polylysine,
polyethylene imine, poly(amidoamine) dendrimers or com-
binations thereof.

For example, the modified nucleic acid or mmRNA of the
invention may be formulated in a pharmaceutical compound
including a poly(alkylene imine), a biodegradable cationic
lipopolymer, a biodegradable block copolymer, a biodegrad-
able polymer, or a biodegradable random copolymer, a bio-
degradable polyester block copolymer, a biodegradable poly-
ester polymer, a biodegradable polyester random copolymer,
a linear biodegradable copolymer, PAGA, a biodegradable
cross-linked cationic multi-block copolymer or combinations
thereof. The biodegradable cationic lipopolymer may be
made by methods known in the art and/or described in U.S.
Pat. No. 6,696,038, U.S. App. Nos. 20030073619 and
20040142474 each of which is herein incorporated by refer-
ence in their entireties. The poly(alkylene imine) may be
made using methods known in the art and/or as described in
U.S. Pub. No. 20100004315, herein incorporated by refer-
ence in its entirety. The biodegradable polymer, biodegrad-
able block copolymer, the biodegradable random copolymer,
biodegradable polyester block copolymer, biodegradable
polyester polymer, or biodegradable polyester random
copolymer may be made using methods known in the art
and/or as described in U.S. Pat. Nos. 6,517,869 and 6,267,
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987, the contents of which are each incorporated herein by
reference in their entirety. The linear biodegradable copoly-
mer may be made using methods known in the art and/or as
described in U.S. Pat. No. 6,652,886. The PAGA polymer
may be made using methods known in the art and/or as
described in U.S. Pat. No. 6,217,912 herein incorporated by
reference in its entirety. The PAGA polymer may be copoly-
merized to form a copolymer or block copolymer with poly-
mers such as but not limited to, poly-L-lysine, polyargine,
polyornithine, histones, avidin, protamines, polylactides and
poly(lactide-co-glycolides). The biodegradable cross-linked
cationic multi-block copolymers may be made my methods
known in the art and/or as described in U.S. Pat. No. 8,057,
821 or U.S. Pub. No. 2012009145 each of which are herein
incorporated by reference in their entireties. For example, the
multi-block copolymers may be synthesized using linear
polyethyleneimine (LPEI) blocks which have distinct pat-
terns as compared to branched polyethyleneimines. Further,
the composition or pharmaceutical composition may be made
by the methods known in the art, described herein, or as
described in U.S. Pub. No. 20100004315 or U.S. Pat. Nos.
6,267,987 and 6,217,912 each of which are herein incorpo-
rated by reference in their entireties.

The polynucleotides, primary constructs, and mmRNA of
the invention may be formulated with at least one degradable
polyester which may contain polycationic side chains.
Degradable polyesters include, but are not limited to, poly
(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-
L-proline ester), and combinations thereof. In another
embodiment, the degradable polyesters may include a PEG
conjugation to form a PEGylated polymer.

The polynucleotides, primary construct, mmRNA of the
invention may be formulated with at least one crosslinkable
polyester. Crosslinkable polyesters include those known in
the art and described in US Pub. No. 20120269761, herein
incorporated by reference in its entirety.

In one embodiment, the polymers described herein may be
conjugated to a lipid-terminating PEG. As a non-limiting
example, PLGA may be conjugated to a lipid-terminating
PEG forming PLGA-DSPE-PEG. As another non-limiting
example, PEG conjugates for use with the present invention
are described in International Publication No.
WO02008103276, herein incorporated by reference in its
entirety. The polymers may be conjugated using a ligand
conjugate such as, but not limited to, the conjugates described
in U.S. Pat. No. 8,273,363, herein incorporated by reference
in its entirety.

In one embodiment, the modified RNA described herein
may be conjugated with another compound. Non-limiting
examples of conjugates are described in U.S. Pat. Nos. 7,964,
578 and 7,833,992, each of which are herein incorporated by
reference in their entireties. In another embodiment, modified
RNA of the present invention may be conjugated with conju-
gates of formula I-122 as described in U.S. Pat. Nos. 7,964,
578 and 7,833,992, each of which are herein incorporated by
reference in their entireties. The polynucleotides, primary
constructs and/or mmRNA described herein may be conju-
gated with a metal such as, but not limited to, gold. (See e.g.,
Giljohann et al. Journ. Amer. Chem. Soc. 2009 131(6): 2072-
2073; herein incorporated by reference in its entirety). In
another embodiment, the polynucleotides, primary con-
structs and/or mmRNA described herein may be conjugated
and/or encapsulated in gold-nanoparticles. (International
Pub. No. W0201216269 and U.S. Pub. No. 20120302940;
each of which is herein incorporated by reference in its
entirety).
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As described in U.S. Pub. No. 20100004313, herein incor-
porated by reference in its entirety, a gene delivery composi-
tion may include a nucleotide sequence and a poloxamer. For
example, the modified nucleic acid and mmRNA of the
present invention may be used in a gene delivery composition
with the poloxamer described in U.S. Pub. No. 20100004313.

Inone embodiment, the polymer formulation ofthe present
invention may be stabilized by contacting the polymer for-
mulation, which may include a cationic carrier, with a cat-
ionic lipopolymer which may be covalently linked to choles-
terol and polyethylene glycol groups. The polymer
formulation may be contacted with a cationic lipopolymer
using the methods described in U.S. Pub. No. 20090042829
herein incorporated by reference in its entirety. The cationic
carrier may include, but is not limited to, polyethylenimine,
poly(trimethylenimine), poly(tetramethylenimine), polypro-
pylenimine, aminoglycoside-polyamine, dideoxy-diamino-
b-cyclodextrin, spermine, spermidine, poly(2-dimethy-
lamino)ethyl methacrylate, poly(lysine), poly(histidine),
poly(arginine), cationized gelatin, dendrimers, chitosan, 1,2-
Dioleoyl-3-Trimethylammonium-Propane (DOTAP), N-[1-
(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chlo-
ride (DOTMA), 1-[2-(oleoyloxy)ethyl]-2-oleyl-3-(2-
hydroxyethyl)imidazolinium chloride (DOTIM), 2,3-
dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-
dimethyl-1-propanaminium trifluoroacetate (DOSPA), 3B—
[N—(N',N'-Dimethylaminoethane)-carbamoyl|Cholesterol
Hydrochloride (DC-Cholesterol HCI) diheptadecylami-
doglycyl spermidine (DOGS), N,N-distearyl-N,N-dimethy-
lammonium bromide (DDAB), N-(1,2-dimyristyloxyprop-3-
y1)-N,N-dimethyl-N-hydroxyethyl ammonium bromide
(DMRIE), N,N-dioleyl-N,N-dimethylammonium chloride
DODAC) and combinations thereof.

The polynucleotides, primary constructs and/or mmRNA
of the invention may be formulated in a polyplex of one or
more polymers (U.S. Pub. No. 20120237565 and
20120270927; each of which is herein incorporated by refer-
ence in its entirety). In one embodiment, the polyplex com-
prises two or more cationic polymers. The catioinic polymer
may comprise a poly(ethylene imine) (PEI) such as linear
PEL

The polynucleotide, primary construct, and mmRNA of
the invention can also be formulated as a nanoparticle using a
combination of polymers, lipids, and/or other biodegradable
agents, such as, but not limited to, calcium phosphate. Com-
ponents may be combined in a core-shell, hybrid, and/or
layer-by-layer architecture, to allow for fine-tuning of the
nanoparticle so to delivery of the polynucleotide, primary
construct and mmRNA may be enhanced (Wang et al., Nat.
Mater. 2006 5:791-796; Fuller et al., Biomaterials. 2008
29:1526-1532; DeKoker et al., Adv Drug Deliv Rev. 2011
63:748-761; Endres et al., Biomaterials. 2011 32:7721-7731;
Suetal., Mol. Pharm. 2011 Jun. 6; 8(3):774-87; herein incor-
porated by reference in its entirety). As a non-limiting
example, the nanoparticle may comprise a plurality of poly-
mers such as, but not limited to hydrophilic-hydrophobic
polymers (e.g., PEG-PLGA), hydrophobic polymers (e.g.,
PEG) and/or hydrophilic polymers (International Pub. No.
W020120225129; herein incorporated by reference in its
entirety).

Biodegradable calcium phosphate nanoparticles in combi-
nation with lipids and/or polymers have been shown to deliver
polynucleotides, primary constructs and mmRNA in vivo. In
one embodiment, a lipid coated calcium phosphate nanopar-
ticle, which may also contain a targeting ligand such as anisa-
mide, may be used to deliver the polynucleotide, primary
construct and mmRNA ofthe present invention. For example,
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to effectively deliver siRNA in a mouse metastatic lung model
alipid coated calcium phosphate nanoparticle was used (Li et
al., J Contr Rel. 2010 142: 416-421; Li et al., J Contr Rel.
2012 158:108-114; Yang et al., Mol. Ther. 2012 20:609-615;
herein incorporated by reference in its entirety). This delivery
system combines both a targeted nanoparticle and a compo-
nent to enhance the endosomal escape, calcium phosphate, in
order to improve delivery of the siRNA.

In one embodiment, calcium phosphate with a PEG-polya-
nion block copolymer may be used to delivery polynucle-
otides, primary constructs and mmRNA (Kazikawa et al., J
Contr Rel. 2004 97:345-356; Kazikawa et al., ] Contr Rel.
2006 111:368-370; herein incorporated by reference in its
entirety).

In one embodiment, a PEG-charge-conversional polymer
(Pitella et al., Biomaterials. 2011 32:3106-3114) may be used
to form a nanoparticle to deliver the polynucleotides, primary
constructs and mmRNA of the present invention. The PEG-
charge-conversional polymer may improve upon the PEG-
polyanion block copolymers by being cleaved into a polyca-
tion at acidic pH, thus enhancing endosomal escape.

The use of core-shell nanoparticles has additionally
focused on a high-throughput approach to synthesize cationic
cross-linked nanogel cores and various shells (Siegwart et al.,
Proc Natl Acad Sci USA. 2011 108:12996-13001). The com-
plexation, delivery, and internalization of the polymeric
nanoparticles can be precisely controlled by altering the
chemical composition in both the core and shell components
of'the nanoparticle. For example, the core-shell nanoparticles
may efficiently deliver siRNA to mouse hepatocytes after
they covalently attach cholesterol to the nanoparticle.

In one embodiment, a hollow lipid core comprising a
middle PLGA layer and an outer neutral lipid layer contain-
ing PEG may be used to delivery of the polynucleotide, pri-
mary construct and mmRNA of the present invention. As a
non-limiting example, in mice bearing a luciferase-express-
ing tumor, it was determined that the lipid-polymer-lipid
hybrid nanoparticle significantly suppressed luciferase
expression, as compared to a conventional lipoplex (Shi et al,
Angew Chem Int Ed. 2011 50:7027-7031; herein incorpo-
rated by reference in its entirety).

In one embodiment, the lipid nanoparticles may comprise
a core of the modified nucleic acid molecules disclosed herein
and a polymer shell. The polymer shell may be any of the
polymers described herein and are known in the art. In an
additional embodiment, the polymer shell may be used to
protect the modified nucleic acids in the core.

Core-shell nanoparticles for use with the modified nucleic
acid molecules of the present invention are described and may
be formed by the methods described in U.S. Pat. No. 8,313,
777 herein incorporated by reference in its entirety.

In one embodiment, the core-shell nanoparticles may com-
prise a core of the modified nucleic acid molecules disclosed
herein and a polymer shell. The polymer shell may be any of
the polymers described herein and are known in the art. In an
additional embodiment, the polymer shell may be used to
protect the modified nucleic acid molecules in the core. As a
non-limiting example, the core-shell nanoparticle may be
used to treat an eye disease or disorder (See e.g. US Publica-
tionNo. 20120321719, herein incorporated by reference in its
entirety).

In one embodiment, the polymer used with the formula-
tions described herein may be a modified polymer (such as,
but not limited to, a modified polyacetal) as described in
International Publication No. W(02011120053, herein incor-
porated by reference in its entirety.
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Peptides and Proteins

The polynucleotide, primary construct, and mmRNA of
the invention can be formulated with peptides and/or proteins
in order to increase transfection of cells by the polynucle-
otide, primary construct, or mmRNA. In one embodiment,
peptides such as, but not limited to, cell penetrating peptides
and proteins and peptides that enable intracellular delivery
may be used to deliver pharmaceutical formulations. A non-
limiting example of a cell penetrating peptide which may be
used with the pharmaceutical formulations of the present
invention includes a cell-penetrating peptide sequence
attached to polycations that facilitates delivery to the intrac-
ellular space, e.g., HIV-derived TAT peptide, penetratins,
transportans, or hCT derived cell-penetrating peptides (see,
e.g., Caron et al., Mol. Ther. 3(3):310-8 (2001); Langel, Cell-
Penetrating Peptides: Processes and Applications (CRC
Press, Boca Raton Fla., 2002); El-Andaloussi et al., Curr.
Pharm. Des. 11(28):3597-611 (2003); and Deshayes et al.,
Cell. Mol. Life. Sci. 62(16):1839-49 (2005), all of which are
incorporated herein by reference in their entirety). The com-
positions can also be formulated to include a cell penetrating
agent, e.g., liposomes, which enhance delivery of the compo-
sitions to the intracellular space. Polynucleotides, primary
constructs, and mmRNA of the invention may be complexed
to peptides and/or proteins such as, but not limited to, pep-
tides and/or proteins from Aileron Therapeutics (Cambridge,
Mass.) and Permeon Biologics (Cambridge, Mass.) in order
to enable intracellular delivery (Cronican et al., ACS Chem.
Biol. 2010 5:747-752; McNaughton et al., Proc. Natl. Acad.
Sci. USA 2009 106:6111-6116; Sawyer, Chem Biol Drug
Des. 2009 73:3-6; Verdine and Hilinski, Methods Enzymol.
2012; 503:3-33; all of which are herein incorporated by ref-
erence in its entirety).

In one embodiment, the cell-penetrating polypeptide may
comprise a first domain and a second domain. The first
domain may comprise a supercharged polypeptide. The sec-
ond domain may comprise a protein-binding partner. As used
herein, “protein-binding partner” includes, but are not limited
to, antibodies and functional fragments thereof, scaffold pro-
teins, or peptides. The cell-penetrating polypeptide may fur-
ther comprise an intracellular binding partner for the protein-
binding partner. The cell-penetrating polypeptide may be
capable of being secreted from a cell where the polynucle-
otide, primary construct, or mmRNA may be introduced.

Formulations of the including peptides or proteins may be
used to increase cell transfection by the polynucleotide, pri-
mary construct, or mmRNA, alter the biodistribution of the
polynucleotide, primary construct, or mmRNA (e.g., by tar-
geting specific tissues or cell types), and/or increase the trans-
lation of encoded protein. (See e.g., International Pub. No.
WO02012110636; herein incorporated by reference in its
entirety).

Cells

The polynucleotide, primary construct, and mmRNA of
the invention can be transfected ex vivo into cells, which are
subsequently transplanted into a subject. As non-limiting
examples, the pharmaceutical compositions may include red
blood cells to deliver modified RNA to liver and myeloid
cells, virosomes to deliver modified RNA in virus-like par-
ticles (VLPs), and electroporated cells such as, but not limited
to, from MAXCYTE® (Gaithersburg, Md.) and from
ERYTECH® (Lyon, France) to deliver modified RNA.
Examples of use of red blood cells, viral particles and elec-
troporated cells to deliver payloads other than mmRNA have
been documented (Godfrin et al., Expert Opin Biol Ther.
2012 12:127-133; Fang et al., Expert Opin Biol Ther. 2012
12:385-389; Hu et al., Proc Natl Acad Sci USA. 2011 108:
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10980-10985; Lund et al., Pharm Res. 2010 27:400-420;
Huckriede etal., ] Liposome Res. 2007; 17:39-47; Cusi, Hum
Vaccin. 2006 2:1-7; de Jonge et al., Gene Ther. 2006 13:400-
411; all of which are herein incorporated by reference in its
entirety).

The polynucleotides, primary constructs and mmRNA
may be delivered in synthetic VLPs synthesized by the meth-
ods described in International Pub No. W02011085231 and
US Pub No. 20110171248, each of which are herein incor-
porated by reference in their entireties.

Cell-based formulations of the polynucleotide, primary
construct, and mmRNA of the invention may be used to
ensure cell transfection (e.g., in the cellular carrier), alter the
biodistribution of the polynucleotide, primary construct, or
mmRNA (e.g., by targeting the cell carrier to specific tissues
or cell types), and/or increase the translation of encoded
protein.

A variety of methods are known in the art and suitable for
introduction of nucleic acid into a cell, including viral and
non-viral mediated techniques. Examples of typical non-viral
mediated techniques include, but are not limited to, elec-
troporation, calcium phosphate mediated transfer, nucleofec-
tion, sonoporation, heat shock, magnetofection, liposome
mediated transfer, microinjection, microprojectile mediated
transfer (nanoparticles), cationic polymer mediated transfer
(DEAE-dextran, polyethylenimine, polyethylene glycol
(PEG) and the like) or cell fusion.

The technique of sonoporation, or cellular sonication, is
the use of sound (e.g., ultrasonic frequencies) for moditying
the permeability of the cell plasma membrane. Sonoporation
methods are known to those in the art and are used to deliver
nucleic acids in vivo (Yoon and Park, Expert Opin Drug
Deliv. 2010 7:321-330; Postema and Gilja, Curr Pharm Bio-
technol. 2007 8:355-361; Newman and Bettinger, Gene Ther.
2007 14:465-475; all herein incorporated by reference in their
entirety). Sonoporation methods are known in the art and are
also taught for example as it relates to bacteria in US Patent
Publication 20100196983 and as it relates to other cell types
in, for example, US Patent Publication 20100009424, each of
which are incorporated herein by reference in their entirety.

Electroporation techniques are also well known in the art
and are used to deliver nucleic acids in vivo and clinically
(Andre et al., Curr Gene Ther. 2010 10:267-280; Chiarella et
al., Curr Gene Ther. 2010 10:281-286; Hojman, Curr Gene
Ther. 2010 10:128-138; all herein incorporated by reference
in their entirety). In one embodiment, polynucleotides, pri-
mary constructs or mmRNA may be delivered by electropo-
ration as described in Example 8.

Hyaluronidase

The intramuscular or subcutaneous localized injection of
polynucleotide, primary construct, or mmRNA of the inven-
tion can include hyaluronidase, which catalyzes the hydroly-
sis of hyaluronan. By catalyzing the hydrolysis of hyaluro-
nan, a constituent of the interstitial barrier, hyaluronidase
lowers the viscosity of hyaluronan, thereby increasing tissue
permeability (Frost, Expert Opin. Drug Deliv. (2007) 4:427-
440; herein incorporated by reference in its entirety). It is
useful to speed their dispersion and systemic distribution of
encoded proteins produced by transfected cells. Alterna-
tively, the hyaluronidase can be used to increase the number
of cells exposed to a polynucleotide, primary construct, or
mmRNA of the invention administered intramuscularly or
subcutaneously.

Nanoparticle Mimics

The polynucleotide, primary construct or mmRNA of the
invention may be encapsulated within and/or absorbed to a
nanoparticle mimic. A nanoparticle mimic can mimic the
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delivery function organisms or particles such as, but not lim-
ited to, pathogens, viruses, bacteria, fungus, parasites, prions
and cells. As a non-limiting example the polynucleotide, pri-
mary construct or mmRNA of the invention may be encapsu-
lated in a non-viron particle which can mimic the delivery
function of a virus (see International Pub. No.
WO02012006376 herein incorporated by reference in its
entirety).

Nanotubes

The polynucleotides, primary constructs or mmRNA ofthe
invention can be attached or otherwise bound to at least one
nanotube such as, but not limited to, rosette nanotubes, rosette
nanotubes having twin bases with a linker, carbon nanotubes
and/or single-walled carbon nanotubes, The polynucleotides,
primary constructs or mmRNA may be bound to the nano-
tubes through forces such as, but not limited to, steric, ionic,
covalent and/or other forces.

In one embodiment, the nanotube can release one or more
polynucleotides, primary constructs or mmRNA into cells.
The size and/or the surface structure of at least one nanotube
may be altered so as to govern the interaction of the nanotubes
within the body and/or to attach or bind to the polynucle-
otides, primary constructs or mmRNA disclosed herein. In
one embodiment, the building block and/or the functional
groups attached to the building block of the at least one
nanotube may be altered to adjust the dimensions and/or
properties of the nanotube. As a non-limiting example, the
length of the nanotubes may be altered to hinder the nano-
tubes from passing through the holes in the walls of normal
blood vessels but still small enough to pass through the larger
holes in the blood vessels of tumor tissue.

In one embodiment, at least one nanotube may also be
coated with delivery enhancing compounds including poly-
mers, such as, but not limited to, polyethylene glycol. In
another embodiment, at least one nanotube and/or the poly-
nucleotides, primary constructs or mmRNA may be mixed
with pharmaceutically acceptable excipients and/or delivery
vehicles.

In one embodiment, the polynucleotides, primary con-
structs or mmRNA are attached and/or otherwise bound to at
least one rosette nanotube. The rosette nanotubes may be
formed by a process known in the art and/or by the process
described in International Publication No. W02012094304,
herein incorporated by reference in its entirety. At least one
polynucleotide, primary construct and/or mmRNA may be
attached and/or otherwise bound to at least one rosette nano-
tube by a process as described in International Publication
No. W02012094304, herein incorporated by reference in its
entirety, where rosette nanotubes or modules forming rosette
nanotubes are mixed in aqueous media with at least one
polynucleotide, primary construct and/or mmRNA under
conditions which may cause at least one polynucleotide, pri-
mary construct or mmRNA to attach or otherwise bind to the
rosette nanotubes.

In one embodiment, the polynucleotides, primary con-
structs or mmRNA may be attached to and/or otherwise
bound to at least one carbon nanotube. As a non-limiting
example, the polynucleotides, primary constructs or
mmRNA may be bound to a linking agent and the linked agent
may be bound to the carbon nanotube (See e.g., U.S. Pat. No.
8,246,995; herein incorporated by reference in its entirety).
The carbon nanotube may be a single-walled nanotube (See
e.g., U.S. Pat. No. 8,246,995; herein incorporated by refer-
ence in its entirety).

Conjugates

The polynucleotides, primary constructs, and mmRNA of

the invention include conjugates, such as a polynucleotide,
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primary construct, or mmRNA covalently linked to a carrier
or targeting group, or including two encoding regions that
together produce a fusion protein (e.g., bearing a targeting
group and therapeutic protein or peptide).

The conjugates of the invention include a naturally occur-
ring substance, such as a protein (e.g., human serum albumin
(HSA), low-density lipoprotein (LDL), high-density lipopro-
tein (HDL), or globulin); an carbohydrate (e.g., a dextran,
pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic
acid); or a lipid. The ligand may also be a recombinant or
synthetic molecule, such as a synthetic polymer, e.g., a syn-
thetic polyamino acid, an oligonucleotide (e.g. an aptamer).
Examples of polyamino acids include polyamino acid is a
polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid,
styrene-maleic acid anhydride copolymer, poly(L-lactide-co-
glycolied) copolymer, divinyl ether-maleic anhydride
copolymer, N-(2-hydroxypropyl)methacrylamide copolymer
(HMPA), polyethylene glycol (PEG), polyvinyl alcohol
(PVA), polyurethane, poly(2-ethylacryllic acid), N-isopropy-
lacrylamide polymers, or polyphosphazine. Example of
polyamines include: polyethylenimine, polylysine (PLL),
spermine,  spermidine,  polyamine, pseudopeptide-
polyamine, peptidomimetic = polyamine, dendrimer
polyamine, arginine, amidine, protamine, cationic lipid, cat-
ionic porphyrin, quaternary salt of a polyamine, or an alpha
helical peptide.

Representative U.S. patents that teach the preparation of
polynucleotide conjugates, particularly to RNA, include, but
are not limited to, U.S. Pat. Nos. 4,828,979, 4,948,882, 5,218,

105;5,525,465; 5,541,313; 5,545,730, 5,552,538; 5,578,717,
5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045;
5414,077;, 5,486,603; 5,512,439; 5,578,718; 5,608,046;
4,587,044; 4,605,735; 4,667,025; 4,762,779, 4,789,737,
4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013;
5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963;
5,214,136, 5,245,022; 5,254,469; 5,258,506, 5,262,536;
5,272,250, 5,292,873; 5,317,098; 5,371,241, 5,391,723;
5416,203, 5,451,463; 5,510,475; 5,512,667, 5,514,785;
5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371,

5,595,726, 5,597,696, 5,599,923; 5,599,928 and 5,688,941,
6,294,664; 6,320,017, 6,576,752; 6,783,931; 6,900,297,
7,037,646; each of which is herein incorporated by reference
in their entireties.

In one embodiment, the conjugate of the present invention
may function as a carrier for the modified nucleic acids and
mmRNA of the present invention. The conjugate may com-
prise a cationic polymer such as, but not limited to,
polyamine, polylysine, polyalkylenimine, and polyethylen-
imine which may be grafted to with poly(ethylene glycol). As
a non-limiting example, the conjugate may be similar to the
polymeric conjugate and the method of synthesizing the poly-
meric conjugate described in U.S. Pat. No. 6,586,524 herein
incorporated by reference in its entirety.

The conjugates can also include targeting groups, e.g., a
cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid
or protein, e.g., an antibody, that binds to a specified cell type
such as a kidney cell. A targeting group can be a thyrotropin,
melanotropin, lectin, glycoprotein, surfactant protein A,
Mucin carbohydrate, multivalent lactose, multivalent galac-
tose, N-acetyl-galactosamine, N-acetyl-gulucosamine multi-
valent mannose, multivalent fucose, glycosylated polyami-
noacids, multivalent galactose, transferrin, bisphosphonate,
polyglutamate, polyaspartate, a lipid, cholesterol, a steroid,
bile acid, folate, vitamin B12, biotin, an RGD peptide, an
RGD peptide mimetic or an aptamer.

Targeting groups can be proteins, e.g., glycoproteins, or
peptides, e.g., molecules having a specific affinity for a co-
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ligand, or antibodies e.g., an antibody, that binds to a specified
cell type such as a cancer cell, endothelial cell, or bone cell.
Targeting groups may also include hormones and hormone
receptors. They can also include non-peptidic species, such as
lipids, lectins, carbohydrates, vitamins, cofactors, multiva-
lent lactose, multivalent galactose, N-acetyl-galactosamine,
N-acetyl-gulucosamine multivalent mannose, multivalent
fucose, or aptamers. The ligand can be, for example, a
lipopolysaccharide, or an activator of p38 MAP kinase.

The targeting group can be any ligand that is capable of
targeting a specific receptor. Examples include, without limi-
tation, folate, GalNAc, galactose, mannose, mannose-6P,
apatamers, integrin receptor ligands, chemokine receptor
ligands, transferrin, biotin, serotonin receptor ligands,
PSMA, endothelin, GCPII, somatostatin, LDL, and HDL
ligands. In particular embodiments, the targeting group is an
aptamer. The aptamer can be unmodified or have any combi-
nation of modifications disclosed herein.

In one embodiment, pharmaceutical compositions of the
present invention may include chemical modifications such
as, but not limited to, modifications similar to locked nucleic
acids.

Representative U.S. patents that teach the preparation of
locked nucleic acid (LNA) such as those from Santaris,
include, but are not limited to, the following: U.S. Pat. Nos.
6,268,490; 6,670,461; 6,794,499, 6,998,484; 7,053,207,
7,084,125; and 7,399,845, each of which is herein incorpo-
rated by reference in its entirety.

Representative U.S. patents that teach the preparation of
PNA compounds include, but are not limited to, U.S. Pat.
Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is
herein incorporated by reference. Further teaching of PNA
compounds can be found, for example, in Nielsen et al.,
Science, 1991, 254, 1497-1500.

Some embodiments featured in the invention include poly-
nucleotides, primary constructs or mmRNA with phospho-
rothioate backbones and oligonucleosides with other modi-
fied backbones, and in particular —CH,—NH—CH,—,
—CH,—N(CH;)—0O—CH,— [known as a methylene (me-
thylimino) or MMI backbone], —CH,—O—N(CH,)—
CH,—, —CH,—N(CH;)—N(CH,)—CH,— and
—N(CH,)—CH,—CH,— [wherein the native phosphodi-
ester backbone is represented as —O—P(0),—0—CH,—]
of the above-referenced U.S. Pat. No. 5,489,677, and the
amide backbones of the above-referenced U.S. Pat. No.
5,602,240. In some embodiments, the polynucleotides fea-
tured herein have morpholino backbone structures of the
above-referenced U.S. Pat. No. 5,034,506.

Modifications at the 2' position may also aid in delivery.
Preferably, modifications at the 2' position are not located in
a polypeptide-coding sequence, i.e., not in a translatable
region. Modifications at the 2' position may be located in a
S'UTR, a 3'UTR and/or a tailing region. Modifications at the
2' position can include one of the following at the 2' position:
H (i.e., 2'-deoxy); F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl;
O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl,
alkenyl and alkynyl may be substituted or unsubstituted C, to
C,, alkyl or C, to C,, alkenyl and alkynyl. Exemplary suit-
able modifications include O[(CH,), 0], CH;, O(CH,).,
OCH,, O(CH,),NH,, O(CH,),CH,, O(CH,),ONH,, and
O(CH,),,ON[(CH,),CH,)],, where n and m are from 1 to
about 10. In other embodiments, the polynucleotides, pri-
mary constructs or mmRNA include one of the following at
the 2' position: C, to C,, lower alkyl, substituted lower alkyl,
alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH;, OCN, Cl,
Br, CN, CF;, OCF;, SOCH,;, SO,CH,, ONO,, NO,,N;,NH,,
heterocycloalkyl, heterocycloalkaryl, aminoalkylamino,
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polyalkylamino, substituted silyl, an RNA cleaving group, a
reporter group, an intercalator, a group for improving the
pharmacokinetic properties, or a group for improving the
pharmacodynamic properties, and other substituents having
similar properties. In some embodiments, the modification
includes a 2'-methoxyethoxy (2'-O—CH,CH,OCHj;, also
known as 2'-O-(2-methoxyethyl) or 2'-MOE) (Martin et al.,
Helv. Chim. Acta, 1995, 78:486-504) i.e., an alkoxy-alkoxy
group. Another exemplary modification is 2'-dimethylami-
nooxyethoxy, i.e., aO(CH,),ON(CH,), group, also known as
2'-DMAOE, as described in examples herein below, and
2'-dimethylaminoethoxyethoxy (also known in the art as
2'-O-dimethylaminoethoxyethyl or 2'-DMAEOE), ie.,
2'-0—CH,—O—CH,—N(CH,),, also described in
examples herein below. Other modifications include 2'-meth-
oxy (2'-OCH;), 2'-aminopropoxy (2'-OCH,CH,CH,NH,)
and 2'-fluoro (2'-F). Similar modifications may also be made
at other positions, particularly the 3' position of the sugar on
the 3' terminal nucleotide or in 2'-5' linked dsRNAs and the §'
position of 5' terminal nucleotide. Polynucleotides of the
invention may also have sugar mimetics such as cyclobutyl
moieties in place of the pentofuranosyl sugar. Representative
U.S. patents that teach the preparation of such modified sugar
structures include, but are not limited to, U.S. Pat. Nos. 4,981,
957, 5,118,800, 5,319,080, 5,359,044; 5,393,878,; 5,446,137,
5,466,786, 5,514,785; 5,519,134; 5,567,811; 5,576,427,
5,591,722, 5,597,909; 5,610,300, 5,627,053; 5,639,873;
5,646,265, 5,658,873; 5,670,633; and 5,700,920 and each of
which is herein incorporated by reference.

In still other embodiments, the polynucleotide, primary
construct, or mmRNA is covalently conjugated to a cell pen-
etrating polypeptide. The cell-penetrating peptide may also
include a signal sequence. The conjugates of the invention
can be designed to have increased stability; increased cell
transfection; and/or altered the biodistribution (e.g., targeted
to specific tissues or cell types).

In one embodiment, the polynucleotides, primary con-
structs or mmRNA may be conjugated to an agent to enhance
delivery. As a non-limiting example, the agent may be a
monomer or polymer such as a targeting monomer or a poly-
mer having targeting blocks as described in International
Publication No. W0O2011062965, herein incorporated by ref-
erence in its entirety. In another non-limiting example, the
agent may be a transport agent covalently coupled to the
polynucleotides, primary constructs or mmRNA of the
present invention (See e.g., U.S. Pat. Nos. 6,835,393 and
7,374,778, each of which is herein incorporated by reference
in its entirety). In yet another non-limiting example, the agent
may be a membrane barrier transport enhancing agent such as
those described in U.S. Pat. Nos. 7,737,108 and 8,003,129,
each of which is herein incorporated by reference in its
entirety.

In another embodiment, polynucleotides, primary con-
structs or mmRNA may be conjugated to SMARTT POLY-
MER TECHNOLOGY® (PHASERX®, Inc. Seattle, Wash.).
Self-Assembled Nanoparticles
Nucleic Acid Self-Assembled Nanoparticles

Self-assembled nanoparticles have a well-defined size
which may be precisely controlled as the nucleic acid strands
may be easily reprogrammable. For example, the optimal
particle size for a cancer-targeting nanodelivery carrier is
20-100 nm as a diameter greater than 20 nm avoids renal
clearance and enhances delivery to certain tumors through
enhanced permeability and retention effect. Using self-as-
sembled nucleic acid nanoparticles a single uniform popula-
tion in size and shape having a precisely controlled spatial
orientation and density of cancer-targeting ligands for
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enhanced delivery. As a non-limiting example, oligonucle-
otide nanoparticles were prepared using programmable self-
assembly of short DNA fragments and therapeutic siRNAs.
These nanoparticles are molecularly identical with control-
lable particle size and target ligand location and density. The
DNA fragments and siRNAs self-assembled into a one-step
reaction to generate DNA/siRNA tetrahedral nanoparticles
for targeted in vivo delivery. (Lee et al., Nature Nanotechnol-
ogy 2012 7:389-393; herein incorporated by reference in its
entirety).

In one embodiment, the polynucleotides, primary con-
structs and/or mmRNA disclosed herein may be formulated
as self-assembled nanoparticles. As a non-limiting example,
nucleic acids may be used to make nanoparticles which may
be used in a delivery system for the polynucleotides, primary
constructs and/or mmRNA of the present invention (Seee.g.,
International Pub. No. WO2012125987; herein incorporated
by reference in its entirety).

In one embodiment, the nucleic acid self-assembled nano-
particles may comprise a core of the polynucleotides, primary
constructs or mmRNA disclosed herein and a polymer shell.
The polymer shell may be any of the polymers described
herein and are known in the art. In an additional embodiment,
the polymer shell may be used to protect the polynucleotides,
primary constructs and mmRNA in the core.
Polymer-Based Self-Assembled Nanoparticles

Polymers may be used to form sheets which self-as-
sembled into nanoparticles. These nanoparticles may be used
to deliver the polynucleotides, primary constructs and
mmRNA of the present invention. In one embodiment, these
self-assembled nanoparticles may be microsponges formed
of'long polymers of RNA hairpins which form into crystalline
‘pleated” sheets before self-assembling into microsponges.
These microsponges are densely-packed sponge like micro-
particles which may function as an efficient carrier and may
be able to deliver cargo to a cell. The microsponges may be
from 1 um to 300 nm in diameter. The microsponges may be
complexed with other agents known in the art to form larger
microsponges. As a non-limiting example, the microsponge
may be complexed with an agent to form an outer layer to
promote cellular uptake such as polycation polyethyleneime
(PEI). This complex can form a 250-nm diameter particle that
can remain stable at high temperatures (150° C.) (Grabow and
Jaegar, Nature Materials 2012, 11:269-269; herein incorpo-
rated by reference in its entirety). Additionally these micro-
sponges may be able to exhibit an extraordinary degree of
protection from degradation by ribonucleases.

In another embodiment, the polymer-based self-assembled
nanoparticles such as, but not limited to, microsponges, may
be fully programmable nanoparticles. The geometry, size and
stoichiometry ofthe nanoparticle may be precisely controlled
to create the optimal nanoparticle for delivery of cargo such
as, but not limited to, polynucleotides, primary constructs
and/or mmRNA.

In one embodiment, the polymer based nanoparticles may
comprise a core of the polynucleotides, primary constructs
and/or mmRNA disclosed herein and a polymer shell. The
polymer shell may be any of the polymers described herein
and are known in the art. In an additional embodiment, the
polymer shell may be used to protect the polynucleotides,
primary construct and/or mmRNA in the core.

In yet another embodiment, the polymer based nanopar-
ticle may comprise a non-nucleic acid polymer comprising a
plurality of heterogenous monomers such as those described
in International Publication No. W02013009736, herein
incorporated by reference in its entirety.
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Inorganic Nanoparticles

The polynucleotides, primary constructs and/or mmRNAs
of'the present invention may be formulated in inorganic nano-
particles (U.S. Pat. No. 8,257,745, herein incorporated by
reference in its entirety). The inorganic nanoparticles may
include, but are not limited to, clay substances that are water
swellable. As a non-limiting example, the inorganic nanopar-
ticle may include synthetic smectite clays which are made
from simple silicates (See e.g., U.S. Pat. Nos. 5,585,108 and
8,257,745 each of which are herein incorporated by reference
in their entirety).

In one embodiment, the inorganic nanoparticles may com-
prise a core of the modified nucleic acids disclosed herein and
a polymer shell. The polymer shell may be any of the poly-
mers described herein and are known in the art. In an addi-
tional embodiment, the polymer shell may be used to protect
the modified nucleic acids in the core.

Semi-Conductive and Metallic Nanoparticles

The polynucleotides, primary constructs and/or mmRNAs
of the present invention may be formulated in water-dispers-
ible nanoparticle comprising a semiconductive or metallic
material (U.S. Pub. No. 20120228565; herein incorporated
by reference in its entirety) or formed in a magnetic nanopar-
ticle (U.S. Pub. No. 20120265001 and 20120283503; each of
which is herein incorporated by reference in its entirety). The
water-dispersible nanoparticles may be hydrophobic nano-
particles or hydrophilic nanoparticles.

In one embodiment, the semi-conductive and/or metallic
nanoparticles may comprise a core of the polynucleotides,
primary constructs and/or mmRNA disclosed herein and a
polymer shell. The polymer shell may be any of the polymers
described herein and are known in the art. In an additional
embodiment, the polymer shell may be used to protect the
polynucleotides, primary constructs and/or mmRNA in the
core.

Gels and Hydrogels

In one embodiment, the polynucleotides, primary con-
structs and/or mmRNA disclosed herein may be encapsulated
into any hydrogel known in the art which may form a gel
when injected into a subject. Hydrogels are a network of
polymer chains that are hydrophilic, and are sometimes found
as a colloidal gel in which water is the dispersion medium.
Hydrogels are highly absorbent (they can contain over 99%
water) natural or synthetic polymers. Hydrogels also possess
a degree of flexibility very similar to natural tissue, due to
their significant water content. The hydrogel described herein
may used to encapsulate lipid nanoparticles which are bio-
compatible, biodegradable and/or porous.

As a non-limiting example, the hydrogel may be an
aptamer-functionalized hydrogel. The aptamer-functional-
ized hydrogel may be programmed to release one or more
polynucleotides, primary constructs and/or mmRNA using
nucleic acid hybridization. (Battig et al., J. Am. Chem. Soci-
ety. 2012 134:12410-12413; herein incorporated by reference
in its entirety).

As another non-limiting example, the hydrogel may be a

shaped as an inverted opal.
The opal hydrogels exhibit higher swelling ratios and the
swelling kinetics is an order of magnitude faster as well.
Methods of producing opal hydrogels and description of opal
hydrogels are described in International Pub. No.
W02012148684, herein incorporated by reference in its
entirety.

In yet another non-limiting example, the hydrogel may be
an antibacterial hydrogel. The antibacterial hydrogel may
comprise a pharmaceutical acceptable salt or organic material
such as, but not limited to pharmaceutical grade and/or medi-
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cal grade silver salt and aloe vera gel or extract. (International
Pub. No. W0O2012151438, herein incorporated by reference
in its entirety).

In one embodiment, the modified mRNA may be encapsu-
lated in a lipid nanoparticle and then the lipid nanoparticle
may be encapsulated into a hydrogel.

In one embodiment, the polynucleotides, primary con-
structs and/or mmRNA disclosed herein may be encapsulated
into any gel known in the art. As a non-limiting example the
gel may be a fluorouracil injectable gel or a fluorouracil
injectable gel containing a chemical compound and/or drug
known in the art. As another example, the polynucleotides,
primary constructs and/or mmRNA may be encapsulated in a
fluorouracil gel containing epinephrine (See e.g., Smith et al.
Cancer Chemotherapy and Pharmacology, 1999 44(4):267-
274; herein incorporated by reference in its entirety).

In one embodiment, the polynucleotides, primary con-
structs and/or mmRNA disclosed herein may be encapsulated
into a fibrin gel, fibrin hydrogel or fibrin glue. In another
embodiment, the polynucleotides, primary constructs and/or
mmRNA may be formulated in a lipid nanoparticle or a
rapidly eliminated lipid nanoparticle prior to being encapsu-
lated into a fibrin gel, fibrin hydrogel or a fibrin glue. In yet
another embodiment, the polynucleotides, primary con-
structs and/or mmRNA may be formulated as a lipoplex prior
to being encapsulated into a fibrin gel, hydrogel or a fibrin
glue. Fibrin gels, hydrogels and glues comprise two compo-
nents, a fibrinogen solution and a thrombin solution which is
rich in calcium (See e.g., Spicer and Mikos, Journal of Con-
trolled Release 2010. 148: 49-55; Kidd et al. Journal of Con-
trolled Release 2012. 157:80-85; each of which is herein
incorporated by reference in its entirety). The concentration
of'the components of the fibrin gel, hydrogel and/or glue can
be altered to change the characteristics, the network mesh
size, and/or the degradation characteristics of the gel, hydro-
gel and/or glue such as, but not limited to changing the release
characteristics of the fibrin gel, hydrogel and/or glue. (See
e.g., Spicer and Mikos, Journal of Controlled Release 2010.
148: 49-55; Kidd et al. Journal of Controlled Release 2012.
157:80-85; Catelas et al. Tissue Engineering 2008. 14:119-
128; each of which is herein incorporated by reference in its
entirety). This feature may be advantageous when used to
deliver the modified mRNA disclosed herein. (See e.g., Kidd
et al. Journal of Controlled Release 2012. 157:80-85; Catelas
et al. Tissue Engineering 2008. 14:119-128; each of which is
herein incorporated by reference in its entirety).

Cations and Anions

Formulations of polynucleotides, primary constructs and/
or mmRNA disclosed herein may include cations or anions.
In one embodiment, the formulations include metal cations
such as, but not limited to, Zn2+, Ca2+, Cu2+, Mg+ and
combinations thereof. As a non-limiting example, formula-
tions may include polymers and a polynucleotides, primary
constructs and/or mmRNA complexed with a metal cation
(See e.g., U.S. Pat. Nos. 6,265,389 and 6,555,525, each of
which is herein incorporated by reference in its entirety).
Molded Nanoparticles and Microparticles

The polynucleotides, primary constructs and/or mmRNA
disclosed herein may be formulated in nanoparticles and/or
microparticles. These nanoparticles and/or microparticles
may be molded into any size shape and chemistry. As an
example, the nanoparticles and/or microparticles may be
made using the PRINT® technology by LIQUIDA TECH-
NOLOGIES® (Morrisville, N.C.) (See e.g., International
Pub. No. W0O2007024323; herein incorporated by reference
in its entirety).
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In one embodiment, the molded nanoparticles may com-
prise a core of the polynucleotides, primary constructs and/or
mmRNA disclosed herein and a polymer shell. The polymer
shell may be any of the polymers described herein and are
known in the art. In an additional embodiment, the polymer
shell may be used to protect the polynucleotides, primary
construct and/or mmRNA in the core.

NanoJackets and NanoLiposomes

The polynucleotides, primary constructs and/or mmRNA
disclosed herein may be formulated in NanoJackets and
NanoLiposomes by Keystone Nano (State College, Pa.).
NanoJackets are made of compounds that are naturally found
in the body including calcium, phosphate and may also
include a small amount of silicates. Nanojackets may range in
size from 5 to 50 nm and may be used to deliver hydrophilic
and hydrophobic compounds such as, but not limited to,
polynucleotides, primary constructs and/or mmRNA.

NanoLiposomes are made of lipids such as, but not limited
to, lipids which naturally occur in the body. NanoLiposomes
may range in size from 60-80 nm and may be used to deliver
hydrophilic and hydrophobic compounds such as, but not
limited to, polynucleotides, primary constructs and/or
mmRNA. In one aspect, the polynucleotides, primary con-
structs and/or mmRNA disclosed herein are formulated in a
NanoLiposome such as, but not limited to, Ceramide Nano-
Liposomes.

Excipients

Pharmaceutical formulations may additionally comprise a
pharmaceutically acceptable excipient, which, as used
herein, includes any and all solvents, dispersion media, dilu-
ents, or other liquid vehicles, dispersion or suspension aids,
surface active agents, isotonic agents, thickening or emulsi-
fying agents, preservatives, solid binders, lubricants and the
like, as suited to the particular dosage form desired. Reming-
ton’s The Science and Practice of Pharmacy, 21°* Edition, A.
R. Gennaro (Lippincott, Williams & Wilkins, Baltimore,
Md., 2006; incorporated herein by reference in its entirety)
discloses various excipients used in formulating pharmaceu-
tical compositions and known techniques for the preparation
thereof. Except insofar as any conventional excipient medium
is incompatible with a substance or its derivatives, such as by
producing any undesirable biological effect or otherwise
interacting in a deleterious manner with any other
component(s) of the pharmaceutical composition, its use is
contemplated to be within the scope of this invention.

In some embodiments, a pharmaceutically acceptable
excipient is at least 95%, at least 96%, at least 97%, at least
98%, at least 99%, or 100% pure. In some embodiments, an
excipient is approved for use in humans and for veterinary
use. In some embodiments, an excipient is approved by
United States Food and Drug Administration. In some
embodiments, an excipient is pharmaceutical grade. In some
embodiments, an excipient meets the standards of the United
States Pharmacopoeia (USP), the European Pharmacopoeia
(EP), the British Pharmacopoeia, and/or the International
Pharmacopoeia.

Pharmaceutically acceptable excipients used in the manu-
facture of pharmaceutical compositions include, but are not
limited to, inert diluents, dispersing and/or granulating
agents, surface active agents and/or emulsifiers, disintegrat-
ing agents, binding agents, preservatives, buffering agents,
lubricating agents, and/or oils. Such excipients may option-
ally be included in pharmaceutical compositions.

Exemplary diluents include, but are not limited to, calcium
carbonate, sodium carbonate, calcium phosphate, dicalcium
phosphate, calcium sulfate, calcium hydrogen phosphate,
sodium phosphate lactose, sucrose, cellulose, microcrystal-
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line cellulose, kaolin, mannitol, sorbitol, inositol, sodium
chloride, dry starch, cornstarch, powdered sugar, etc., and/or
combinations thereof.

Exemplary granulating and/or dispersing agents include,
but are not limited to, potato starch, corn starch, tapioca
starch, sodium starch glycolate, clays, alginic acid, guar gum,
citrus pulp, agar, bentonite, cellulose and wood products,
natural sponge, cation-exchange resins, calcium carbonate,
silicates, sodium carbonate, cross-linked poly(vinyl-pyrroli-
done) (crospovidone), sodium carboxymethyl starch (sodium
starch glycolate), carboxymethyl cellulose, cross-linked
sodium carboxymethyl cellulose (croscarmellose), methyl-
cellulose, pregelatinized starch (starch 1500), microcrystal-
line starch, water insoluble starch, calcium carboxymethyl
cellulose, magnesium aluminum silicate (VEEGUM®),
sodium lauryl sulfate, quaternary ammonium compounds,
etc., and/or combinations thereof.

Exemplary surface active agents and/or emulsifiers
include, but are not limited to, natural emulsifiers (e.g. acacia,
agar, alginic acid, sodium alginate, tragacanth, chondrux,
cholesterol, xanthan, pectin, gelatin, egg yolk, casein, wool
fat, cholesterol, wax, and lecithin), colloidal clays (e.g. ben-
tonite [aluminum silicate] and VEEGUM® [magnesium alu-
minum silicate]), long chain amino acid derivatives, high
molecular weight alcohols (e.g. stearyl alcohol, cetyl alcohol,
oleyl alcohol, triacetin monostearate, ethylene glycol distear-
ate, glyceryl monostearate, and propylene glycol monostear-
ate, polyvinyl alcohol), carbomers (e.g. carboxy polymethyl-
ene, polyacrylic acid, acrylic acid polymer, and carboxyvinyl
polymer), carrageenan, cellulosic derivatives (e.g. carboxym-
ethylcellulose sodium, powdered cellulose, hydroxymethyl
cellulose, hydroxypropy! cellulose, hydroxypropyl methyl-
cellulose, methylcellulose), sorbitan fatty acid esters (e.g.
polyoxyethylene sorbitan monolaurate [ TWEEN®20], poly-
oxyethylene sorbitan [TWEENn®60], polyoxyethylene sor-
bitan monooleate [TWEEN®80], sorbitan monopalmitate
[SPAN®40], sorbitan monostearate [SPAN®60], sorbitan
tristearate  [SPAN®65], glyceryl monooleate, sorbitan
monooleate [ SPAN®80]), polyoxyethylene esters (e.g. poly-
oxyethylene monostearate [MYRI®45], polyoxyethylene
hydrogenated castor oil, polyethoxylated castor oil, poly-
oxymethylene stearate, and SOLUTOL®), sucrose fatty acid
esters, polyethylene glycol fatty acid esters (e.g. CREMO-
PHOR®), polyoxyethylene ethers, (e.g. polyoxyethylene
lauryl ether [BRIJ® 30]), poly(vinyl-pyrrolidone), diethyl-
ene glycol monolaurate, triethanolamine oleate, sodium ole-
ate, potassium oleate, ethyl oleate, oleic acid, ethyl laurate,
sodium lauryl sulfate, PLUORINC®F 68, POLOXAMER®
188, cetrimonium bromide, cetylpyridinium chloride, benza-
Ikonium chloride, docusate sodium, etc. and/or combinations
thereof.

Exemplary binding agents include, but are not limited to,
starch (e.g. cornstarch and starch paste); gelatin; sugars (e.g.
sucrose, glucose, dextrose, dextrin, molasses, lactose, lacti-
tol, mannitol,); natural and synthetic gums (e.g. acacia,
sodium alginate, extract of Irish moss, panwar gum, ghatti
gum, mucilage of isapol husks, carboxymethylcellulose,
methylcellulose, ethylcellulose, hydroxyethylcellulose,
hydroxypropyl cellulose, hydroxypropyl methylcellulose,
microcrystalline cellulose, cellulose acetate, poly(vinyl-pyr-
rolidone), magnesium aluminum silicate (Veegum), and larch
arabogalactan); alginates; polyethylene oxide; polyethylene
glycol; inorganic calcium salts; silicic acid; polymethacry-
lates; waxes; water; alcohol; etc.; and combinations thereof.

Exemplary preservatives may include, but are not limited
to, antioxidants, chelating agents, antimicrobial preserva-
tives, antifungal preservatives, alcohol preservatives, acidic
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preservatives, and/or other preservatives. Exemplary antioxi-
dants include, but are not limited to, alpha tocopherol, ascor-
bic acid, acorbyl palmitate, butylated hydroxyanisole, buty-
lated hydroxytoluene, monothioglycerol, potassium
metabisulfite, propionic acid, propyl gallate, sodium ascor-
bate, sodium bisulfite, sodium metabisulfite, and/or sodium
sulfite. Exemplary chelating agents include ethylenediamine-
tetraacetic acid (EDTA), citric acid monohydrate, disodium
edetate, dipotassium edetate, edetic acid, fumaric acid, malic
acid, phosphoric acid, sodium edetate, tartaric acid, and/or
trisodium edetate. Exemplary antimicrobial preservatives
include, but are not limited to, benzalkonium chloride, ben-
zethonium chloride, benzyl alcohol, bronopol, cetrimide,
cetylpyridinium chloride, chlorhexidine, chlorobutanol,
chlorocresol, chloroxylenol, cresol, ethyl alcohol, glycerin,
hexetidine, imidurea, phenol, phenoxyethanol, phenylethyl
alcohol, phenylmercuric nitrate, propylene glycol, and/or
thimerosal. Exemplary antifungal preservatives include, but
are not limited to, butyl paraben, methyl paraben, ethyl para-
ben, propyl paraben, benzoic acid, hydroxybenzoic acid,
potassium benzoate, potassium sorbate, sodium benzoate,
sodium propionate, and/or sorbic acid. Exemplary alcohol
preservatives include, but are not limited to, ethanol, polyeth-
ylene glycol, phenol, phenolic compounds, bisphenol, chlo-
robutanol, hydroxybenzoate, and/or phenylethyl alcohol.
Exemplary acidic preservatives include, but are not limited to,
vitamin A, vitamin C, vitamin E, beta-carotene, citric acid,
acetic acid, dehydroacetic acid, ascorbic acid, sorbic acid,
and/or phytic acid. Other preservatives include, but are not
limited to, tocopherol, tocopherol acetate, deteroxime mesy-
late, cetrimide, butylated hydroxyanisol (BHA), butylated
hydroxytoluened (BHT), ethylenediamine, sodium lauryl
sulfate (SLS), sodium lauryl ether sulfate (SLES), sodium
bisulfite, sodium metabisulfite, potassium sulfite, potassium
metabisulfite, GLYDANT PLUS®, PHENONIP®, meth-
ylparaben, = GERMALL® 115, GERMABEN®I],
NEOLONE™, KATHON™,_ and/or EUXYL®.

Exemplary buffering agents include, but are not limited to,
citrate buffer solutions, acetate buffer solutions, phosphate
buffer solutions, ammonium chloride, calcium carbonate,
calcium chloride, calcium citrate, calcium glubionate, cal-
cium gluceptate, calcium gluconate, D-gluconic acid, cal-
cium glycerophosphate, calcium lactate, propanoic acid, cal-
cium levulinate, pentanoic acid, dibasic calcium phosphate,
phosphoric acid, tribasic calcium phosphate, calcium hydrox-
ide phosphate, potassium acetate, potassium chloride, potas-
sium gluconate, potassium mixtures, dibasic potassium phos-
phate, monobasic potassium phosphate, potassium phosphate
mixtures, sodium acetate, sodium bicarbonate, sodium chlo-
ride, sodium citrate, sodium lactate, dibasic sodium phos-
phate, monobasic sodium phosphate, sodium phosphate mix-
tures, tromethamine, magnesium hydroxide, aluminum
hydroxide, alginic acid, pyrogen-free water, isotonic saline,
Ringer’s solution, ethyl alcohol, etc., and/or combinations
thereof.

Exemplary lubricating agents include, but are not limited
to, magnesium stearate, calcium stearate, stearic acid, silica,
talc, malt, glyceryl behanate, hydrogenated vegetable oils,
polyethylene glycol, sodium benzoate, sodium acetate,
sodium chloride, leucine, magnesium lauryl sulfate, sodium
lauryl sulfate, etc., and combinations thereof.

Exemplary oils include, but are not limited to, almond,
apricot kernel, avocado, babassu, bergamot, black current
seed, borage, cade, chamomile, canola, caraway, carnauba,
castor, cinnamon, cocoa butter, coconut, cod liver, coffee,
corn, cotton seed, emu, eucalyptus, evening primrose, fish,
flaxseed, geraniol, gourd, grape seed, hazel nut, hyssop, iso-
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propyl myristate, jojoba, kukui nut, lavandin, lavender,
lemon, litsea cubeba, macadamia nut, mallow, mango seed,
meadowfoam seed, mink, nutmeg, olive, orange, orange
roughy, palm, palm kernel, peach kernel, peanut, poppy seed,
pumpkin seed, rapeseed, rice bran, rosemary, safflower, san-
dalwood, sasquana, savoury, sea buckthorn, sesame, shea
butter, silicone, soybean, sunflower, tea tree, thistle, tsubaki,
vetiver, walnut, and wheat germ oils. Exemplary oils include,
but are not limited to, butyl stearate, caprylic triglyceride,
capric triglyceride, cyclomethicone, diethyl sebacate, dime-
thicone 360, isopropyl myristate, mineral oil, octyldode-
canol, oleyl alcohol, silicone oil, and/or combinations
thereof.

Excipients such as cocoa butter and suppository waxes,
coloring agents, coating agents, sweetening, flavoring, and/or
perfuming agents can be present in the composition, accord-
ing to the judgment of the formulator.

Delivery

The present disclosure encompasses the delivery of poly-
nucleotides, primary constructs or mmRNA for any of thera-
peutic, pharmaceutical, diagnostic or imaging by any appro-
priate route taking into consideration likely advances in the
sciences of drug delivery. Delivery may be naked or formu-
lated.

Naked Delivery

The polynucleotides, primary constructs or mmRNA ofthe
present invention may be delivered to a cell naked. As used
herein in, “naked” refers to delivering polynucleotides, pri-
mary constructs or mmRNA free from agents which promote
transfection. For example, the polynucleotides, primary con-
structs or mmRNA delivered to the cell may contain no modi-
fications. The naked polynucleotides, primary constructs or
mmRNA may be delivered to the cell using routes of admin-
istration known in the art and described herein.

Formulated Delivery

The polynucleotides, primary constructs or mmRNA ofthe
present invention may be formulated, using the methods
described herein. The formulations may contain polynucle-
otides, primary constructs or mmRNA which may be modi-
fied and/or unmodified. The formulations may further
include, but are not limited to, cell penetration agents, a
pharmaceutically acceptable carrier, a delivery agent, a bio-
erodible or biocompatible polymer, a solvent, and a sus-
tained-release delivery depot. The formulated polynucle-
otides, primary constructs or mmRNA may be delivered to
the cell using routes of administration known in the art and
described herein.

The compositions may also be formulated for direct deliv-
ery to an organ or tissue in any of several ways in the art
including, but not limited to, direct soaking or bathing, via a
catheter, by gels, powder, ointments, creams, gels, lotions,
and/or drops, by using substrates such as fabric or biodegrad-
able materials coated or impregnated with the compositions,
and the like.

Administration

The polynucleotides, primary constructs or mmRNA ofthe
present invention may be administered by any route which
results in a therapeutically effective outcome. These include,
but are not limited to enteral, gastroenteral, epidural, oral,
transdermal, epidural (peridural), intracerebral (into the cere-
brum), intracerebroventricular (into the cerebral ventricles),
epicutaneous (application onto the skin), intradermal, (into
the skin itself), subcutaneous (under the skin), nasal admin-
istration (through the nose), intravenous (into a vein), intraar-
terial (into an artery), intramuscular (into a muscle), intrac-
ardiac (into the heart), intraosseous infusion (into the bone
marrow), intrathecal (into the spinal canal), intraperitoneal,
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(infusion or injection into the peritoneum), intravesical infu-
sion, intravitreal, (through the eye), intracavernous injection,
(into the base of the penis), intravaginal administration,
intrauterine, extra-amniotic administration, transdermal (dif-
fusion through the intact skin for systemic distribution),
transmucosal (diffusion through a mucous membrane), insuf-
flation (snorting), sublingual, sublabial, enema, eye drops
(onto the conjunctiva), or in ear drops. In specific embodi-
ments, compositions may be administered in a way which
allows them cross the blood-brain barrier, vascular barrier, or
other epithelial barrier. Non-limiting routes of administration
for the polynucleotides, primary constructs or mmRNA of'the
present invention are described below.

Parenteral and Injectable Administration

Liquid dosage forms for parenteral administration include,
but are not limited to, pharmaceutically acceptable emul-
sions, microemulsions, solutions, suspensions, syrups, and/or
elixirs. In addition to active ingredients, liquid dosage forms
may comprise inert diluents commonly used in the art such as,
for example, water or other solvents, solubilizing agents and
emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl
carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate,
propylene glycol, 1,3-butylene glycol, dimethylformamide,
oils (in particular, cottonseed, groundnut, corn, germ, olive,
castor, and sesame oils), glycerol, tetrahydrotfurfuryl alcohol,
polyethylene glycols and fatty acid esters of sorbitan, and
mixtures thereof. Besides inert diluents, oral compositions
can include adjuvants such as wetting agents, emulsifying
and suspending agents, sweetening, flavoring, and/or perfum-
ing agents. In certain embodiments for parenteral administra-
tion, compositions are mixed with solubilizing agents such as
CREMOPHOR®, alcohols, oils, modified oils, glycols,
polysorbates, cyclodextrins, polymers, and/or combinations
thereof.

Injectable preparations, for example, sterile injectable
aqueous or oleaginous suspensions may be formulated
according to the known art using suitable dispersing agents,
wetting agents, and/or suspending agents. Sterile injectable
preparations may be sterile injectable solutions, suspensions,
and/or emulsions in nontoxic parenterally acceptable diluents
and/or solvents, for example, as a solution in 1,3-butanediol.
Among the acceptable vehicles and solvents that may be
employed are water, Ringer’s solution, U.S.P., and isotonic
sodium chloride solution. Sterile, fixed oils are convention-
ally employed as a solvent or suspending medium. For this
purpose any bland fixed oil can be employed including syn-
thetic mono- or diglycerides. Fatty acids such as oleic acid
can be used in the preparation of injectables.

Injectable formulations can be sterilized, for example, by
filtration through a bacterial-retaining filter, and/or by incor-
porating sterilizing agents in the form of sterile solid compo-
sitions which can be dissolved or dispersed in sterile water or
other sterile injectable medium prior to use.

In order to prolong the effect of an active ingredient, it is
often desirable to slow the absorption of the active ingredient
from subcutaneous or intramuscular injection. This may be
accomplished by the use of a liquid suspension of crystalline
or amorphous material with poor water solubility. The rate of
absorption of the drug then depends upon its rate of dissolu-
tion which, in turn, may depend upon crystal size and crys-
talline form. Alternatively, delayed absorption of a parenter-
ally administered drug form is accomplished by dissolving or
suspending the drug in an oil vehicle. Injectable depot forms
are made by forming microencapsule matrices of the drug in
biodegradable polymers such as polylactide-polyglycolide.
Depending upon the ratio of drug to polymer and the nature of
the particular polymer employed, the rate of drug release can
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be controlled. Examples of other biodegradable polymers
include poly(orthoesters) and poly(anhydrides). Depot
injectable formulations are prepared by entrapping the drug
in liposomes or microemulsions which are compatible with
body tissues.

Rectal and Vaginal Administration

Compositions for rectal or vaginal administration are typi-
cally suppositories which can be prepared by mixing compo-
sitions with suitable non-irritating excipients such as cocoa
butter, polyethylene glycol or a suppository wax which are
solid at ambient temperature but liquid at body temperature
and therefore melt in the rectum or vaginal cavity and release
the active ingredient.

Oral Administration

Liquid dosage forms for oral administration include, but
are not limited to, pharmaceutically acceptable emulsions,
microemulsions, solutions, suspensions, syrups, and/or elix-
irs. In addition to active ingredients, liquid dosage forms may
comprise inert diluents commonly used in the art such as, for
example, water or other solvents, solubilizing agents and
emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl
carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate,
propylene glycol, 1,3-butylene glycol, dimethylformamide,
oils (in particular, cottonseed, groundnut, corn, germ, olive,
castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol,
polyethylene glycols and fatty acid esters of sorbitan, and
mixtures thereof. Besides inert diluents, oral compositions
can include adjuvants such as wetting agents, emulsifying
and suspending agents, sweetening, flavoring, and/or perfum-
ing agents. In certain embodiments for parenteral administra-
tion, compositions are mixed with solubilizing agents such as
CREMOPHOR®, alcohols, oils, modified oils, glycols,
polysorbates, cyclodextrins, polymers, and/or combinations
thereof.

Solid dosage forms for oral administration include cap-
sules, tablets, pills, powders, and granules. In such solid dos-
age forms, an active ingredient is mixed with at least one inert,
pharmaceutically acceptable excipient such as sodium citrate
or dicalcium phosphate and/or fillers or extenders (e.g.
starches, lactose, sucrose, glucose, mannitol, and silicic acid),
binders (e.g. carboxymethylcellulose, alginates, gelatin,
polyvinylpyrrolidinone, sucrose, and acacia), humectants
(e.g. glycerol), disintegrating agents (e.g. agar, calcium car-
bonate, potato or tapioca starch, alginic acid, certain silicates,
and sodium carbonate), solution retarding agents (e.g. parat-
fin), absorption accelerators (e.g. quaternary ammonium
compounds), wetting agents (e.g. cetyl alcohol and glycerol
monostearate), absorbents (e.g. kaolin and bentonite clay),
and lubricants (e.g. talc, calcium stearate, magnesium stear-
ate, solid polyethylene glycols, sodium lauryl sulfate), and
mixtures thereof. In the case of capsules, tablets and pills, the
dosage form may comprise buffering agents.

Topical or Transdermal Administration

As described herein, compositions containing the poly-
nucleotides, primary constructs or mmRNA of the invention
may be formulated for administration topically. The skin may
be an ideal target site for delivery as it is readily accessible.
Gene expression may be restricted not only to the skin, poten-
tially avoiding nonspecific toxicity, but also to specific layers
and cell types within the skin.

The site of cutaneous expression of the delivered compo-
sitions will depend on the route of nucleic acid delivery. Three
routes are commonly considered to deliver polynucleotides,
primary constructs or mmRNA to the skin: (i) topical appli-
cation (e.g. for local/regional treatment and/or cosmetic
applications); (ii) intradermal injection (e.g. for local/re-
gional treatment and/or cosmetic applications); and (iii) sys-
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temic delivery (e.g. for treatment of dermatologic diseases
that affect both cutaneous and extracutaneous regions). Poly-
nucleotides, primary constructs or mmRNA can be delivered
to the skin by several different approaches known in the art.
Most topical delivery approaches have been shown to work
for delivery of DNA, such as but not limited to, topical appli-
cation of non-cationic liposome-DNA complex, cationic
liposome-DNA complex, particle-mediated (gene gun),
puncture-mediated gene transfections, and viral delivery
approaches. After delivery of the nucleic acid, gene products
have been detected in a number of different skin cell types,
including, but not limited to, basal keratinocytes, sebaceous
gland cells, dermal fibroblasts and dermal macrophages.

In one embodiment, the invention provides for a variety of
dressings (e.g., wound dressings) or bandages (e.g., adhesive
bandages) for conveniently and/or effectively carrying out
methods of the present invention. Typically dressing or ban-
dages may comprise sufficient amounts of pharmaceutical
compositions and/or polynucleotides, primary constructs or
mmRNA described herein to allow a user to perform multiple
treatments of a subject(s).

In one embodiment, the invention provides for the poly-
nucleotides, primary constructs or mmRNA compositions to
be delivered in more than one injection.

In one embodiment, before topical and/or transdermal
administration at least one area of tissue, such as skin, may be
subjected to a device and/or solution which may increase
permeability. In one embodiment, the tissue may be subjected
to an abrasion device to increase the permeability of the skin
(see U.S. Patent Publication No. 20080275468, herein incor-
porated by reference in its entirety). In another embodiment,
the tissue may be subjected to an ultrasound enhancement
device. An ultrasound enhancement device may include, but
is not limited to, the devices described in U.S. Publication No.
20040236268 and U.S. Pat. Nos. 6,491,657 and 6,234,990;
each of which are herein incorporated by reference in their
entireties. Methods of enhancing the permeability of tissue
are described in U.S. Publication Nos. 20040171980 and
20040236268 and U.S. Pat. No. 6,190,315; each of which are
herein incorporated by reference in their entireties.

In one embodiment, a device may be used to increase
permeability of tissue before delivering formulations of
modified mRNA described herein. The permeability of skin
may be measured by methods known in the art and/or
described in U.S. Pat. No. 6,190,315, herein incorporated by
reference in its entirety. As a non-limiting example, a modi-
fied mRNA formulation may be delivered by the drug deliv-
ery methods described in U.S. Pat. No. 6,190,315, herein
incorporated by reference in its entirety.

In another non-limiting example tissue may be treated with
a eutectic mixture of local anesthetics (EMLA) cream before,
during and/or after the tissue may be subjected to a device
which may increase permeability. Katz et al. (Anesth Analg
(2004); 98:371-76; herein incorporated by reference in its
entirety) showed that using the EMLLA cream in combination
with a low energy, an onset of superficial cutaneous analgesia
was seen as fast as 5 minutes after a pretreatment with a low
energy ultrasound.

In one embodiment, enhancers may be applied to the tissue
before, during, and/or after the tissue has been treated to
increase permeability. Enhancers include, but are not limited
to, transport enhancers, physical enhancers, and cavitation
enhancers. Non-limiting examples of enhancers are
described in U.S. Pat. No. 6,190,315, herein incorporated by
reference in its entirety.

In one embodiment, a device may be used to increase
permeability of tissue before delivering formulations of
modified mRNA described herein, which may further contain
a substance that invokes an immune response. In another
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non-limiting example, a formulation containing a substance
to invoke an immune response may be delivered by the meth-
ods described in U.S. Publication Nos. 20040171980 and
20040236268; each of which are herein incorporated by ref-
erence in their entireties.

Dosage forms for topical and/or transdermal administra-
tion of a composition may include ointments, pastes, creams,
lotions, gels, powders, solutions, sprays, inhalants and/or
patches. Generally, an active ingredient is admixed under
sterile conditions with a pharmaceutically acceptable excipi-
ent and/or any needed preservatives and/or buffers as may be
required.

Additionally, the present invention contemplates the use of
transdermal patches, which often have the added advantage of
providing controlled delivery of a compound to the body.
Such dosage forms may be prepared, for example, by dissolv-
ing and/or dispensing the compound in the proper medium.
Alternatively or additionally, rate may be controlled by either
providing a rate controlling membrane and/or by dispersing
the compound in a polymer matrix and/or gel.

Formulations suitable for topical administration include,
but are not limited to, liquid and/or semi liquid preparations
such as liniments, lotions, oil in water and/or water in oil
emulsions such as creams, ointments and/or pastes, and/or
solutions and/or suspensions.

Topically-administrable formulations may, for example,
comprise from about 0.1% to about 10% (w/w) active ingre-
dient, although the concentration of active ingredient may be
as high as the solubility limit of the active ingredient in the
solvent. Formulations for topical administration may further
comprise one or more of the additional ingredients described
herein.

Depot Administration

As described herein, in some embodiments, the composi-
tion is formulated in depots for extended release. Generally, a
specific organ or tissue (a “target tissue”) is targeted for
administration.

In some aspects of the invention, the polynucleotides, pri-
mary constructs or mmRNA are spatially retained within or
proximal to a target tissue. Provided are method of providing
a composition to a target tissue of a mammalian subject by
contacting the target tissue (which contains one or more target
cells) with the composition under conditions such that the
composition, in particular the nucleic acid component(s) of
the composition, is substantially retained in the target tissue,
meaning that at least 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95,
96, 97, 98, 99, 99.9, 99.99 or greater than 99.99% of the
composition is retained in the target tissue. Advantageously,
retention is dete